Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernhard Zabel is active.

Publication


Featured researches published by Bernhard Zabel.


Cell | 2001

LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development

Gong Y; R. B. Slee; Naomi Fukai; Georges Rawadi; Sergio Roman-Roman; Anthony M. Reginato; Hong Wang; Tim Cundy; F. H. Glorieux; Dorit Lev; M. Zacharin; K. Oexle; Jose Marcelino; Wafaa M. Suwairi; Shauna Heeger; G. Sabatakos; Suneel S. Apte; W. N. Adkins; J. Allgrove; M. Arslan-Kirchner; J. A. Batch; Peter Beighton; Graeme C.M. Black; R. G. Boles; Laurence Boon; C. Borrone; Han G. Brunner; G. F. Carle; Bruno Dallapiccola; A. De Paepe

In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.


Cell | 1997

Mutations Involving the Transcription Factor CBFA1 Cause Cleidocranial Dysplasia

S Mundlos; Florian Otto; C Mundlos; John B. Mulliken; A.S. Aylsworth; S Albright; Dick Lindhout; W.G Cole; W Henn; J.H.M Knoll; Michael John Owen; R Mertelsmann; Bernhard Zabel; Björn Olsen

Cleidocranial dysplasia (CCD) is an autosomal-dominant condition characterized by hypoplasia/aplasia of clavicles, patent fontanelles, supernumerary teeth, short stature, and other changes in skeletal patterning and growth. In some families, the phenotype segregates with deletions resulting in heterozygous loss of CBFA1, a member of the runt family of transcription factors. In other families, insertion, deletion, and missense mutations lead to translational stop codons in the DNA binding domain or in the C-terminal transactivating region. In-frame expansion of a polyalanine stretch segregates in an affected family with brachydactyly and minor clinical findings of CCD. We conclude that CBFA1 mutations cause CCD and that heterozygous loss of function is sufficient to produce the disorder.


Cell | 1994

Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9

Thomas Wagner; Jutta Wirth; Jobst Meyer; Bernhard Zabel; Marika Held; J. Zimmer; Juan J. Pasantes; Franca Dagna Bricarelli; Jürgen Keutel; Elisabeth Hustert; U. Wolf; Niels Tommerup; Werner Schempp; Gerd Scherer

A human autosomal XY sex reversal locus, SRA1, associated with the skeletal malformation syndrome campomelic dysplasia (CMPD1), has been placed at distal 17q. The SOX9 gene, a positional candidate from the chromosomal location and expression pattern reported for mouse Sox9, was isolated and characterized. SOX9 encodes a putative transcription factor structurally related to the testis-determining factor SRY and is expressed in many adult tissues, and in fetal testis and skeletal tissue. Inactivating mutations on one SOX9 allele identified in nontranslocation CMPD1-SRA1 cases point to haploinsufficiency for SOX9 as the cause for both campomelic dysplasia and autosomal XY sex reversal. The 17q breakpoints in three CMPD1 translocation cases map 50 kb or more from SOX9.


Nature Genetics | 1996

Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome

Elena V. Semina; Rebecca S. Reiter; Nancy J. Leysens; W. Lee M. Alward; Kent W. Small; Nicole A. Datson; Jacqueline Siegel-Bartelt; Diane Bierke-Nelson; Pierre Bitoun; Bernhard Zabel; John C. Carey; Jeffrey C. Murray

Rieger syndrome (REG) is an autosomal–dominant human disorder that includes anomalies of the anterior chamber of the eye, dental hypoplasia and a protuberant umbilicus. We report the human cDNA and genomic characterization of a new homeobox gene, RIEG, causing this disorder. Six mutations in RIEG were found in individuals with the disorder. The cDNA sequence of Rieg, the murine homologue of RIEG, has also been isolated and shows strong homology with the human sequence. In mouse embryos Rieg mRNA localized in the periocular mesenchyme, maxillary and mandibular epithelia, and umbilicus, all consistent with RIEG abnormalities. The gene is also expressed in Rathkes pouch, vitelline vessels and the limb mesenchyme. RIEG characterization provides opportunities for understanding ocular, dental and umbilical development and the pleiotropic interactions of pituitary and limb morphogenesis.


American Journal of Medical Genetics Part A | 2007

Nosology and classification of genetic skeletal disorders: 2010 revision

Matthew L. Warman; Valérie Cormier-Daire; Christine M. Hall; Deborah Krakow; Ralph S. Lachman; Martine Lemerrer; Geert Mortier; Stefan Mundlos; Gen Nishimura; David L. Rimoin; Stephen P. Robertson; Ravi Savarirayan; David Sillence; Juergen Spranger; Sheila Unger; Bernhard Zabel; Andrea Superti-Furga

The objective of the paper is to provide the revision of the Nosology of Constitutional Disorders of Bone that incorporates newly recognized disorders and reflects new molecular and pathogenetic concepts. Criteria for inclusion of disorders were (1) significant skeletal involvement corresponding to the definition of skeletal dysplasias, metabolic bone disorders, dysostoses, and skeletal malformation and/or reduction syndromes, (2) publication and/or MIM listing, (3) genetic basis proven or very likely, and (4) nosologic autonomy confirmed by molecular or linkage analysis and/or distinctive diagnostic features and observation in multiple individuals or families. Three hundred seventy‐two different conditions were included and placed in 37 groups defined by molecular, biochemical and/or radiographic criteria. Of these conditions, 215 were associated with one or more of 140 different genes. Nosologic status was classified as final (mutations or locus identified), probable (pedigree evidence), or bona fide (multiple observations and clear diagnostic criteria, but no pedigree or locus evidence yet). The number of recognized genetic disorders with a significant skeletal component is growing and the distinction between dysplasias, metabolic bone disorders, dysostoses, and malformation syndromes is blurring. For classification purposes, pathogenetic and molecular criteria are integrating with morphological ones but disorders are still identified by clinical features and radiographic appearance. Molecular evidence leads to confirmation of individual entities and to the constitution of new groups, but also allows for delineation of related but distinct entities and indicates a previously unexpected heterogeneity of molecular mechanisms; thus, molecular evidence does not necessarily simplify the Nosology, and a further increase in the number of entities and growing complexity is expected. By providing an updated overview of recognized entities with skeletal involvement and of the underlying gene defects, the new Nosology can provide practical diagnostic help, facilitate the recognition of new entities, and foster and direct research in skeletal biology and genetic disorders.


Nature Genetics | 2010

Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes

Sabine Endele; Georg Rosenberger; Kirsten Geider; Bernt Popp; Ceyhun Tamer; Irina Stefanova; Mathieu Milh; Fanny Kortüm; Angela Fritsch; Friederike K. Pientka; Yorck Hellenbroich; Vera M. Kalscheuer; Jürgen Kohlhase; Ute Moog; Gudrun Rappold; Anita Rauch; Hans-Hilger Ropers; Sarah von Spiczak; Holger Tönnies; Nathalie Villeneuve; Laurent Villard; Bernhard Zabel; Martin Zenker; Bodo Laube; André Reis; Dagmar Wieczorek; Lionel Van Maldergem; Kerstin Kutsche

N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2+-permeable cation channels which are blocked by extracellular Mg2+ in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2AN615K (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2+ block and a decrease in Ca2+ permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.


Proceedings of the National Academy of Sciences of the United States of America | 2003

TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i

Dirk Prawitt; Mahealani K. Monteilh-Zoller; Lili R. Brixel; Christian Spangenberg; Bernhard Zabel; Andrea Fleig; Reinhold Penner

Transient receptor potential (TRP) proteins are a diverse family of proteins with structural features typical of ion channels. TRPM5, a member of the TRPM subfamily, plays an important role in taste receptors, although its activation mechanism remains controversial and its function in signal transduction is unknown. Here we characterize the functional properties of heterologously expressed human TRPM5 in HEK-293 cells. TRPM5 displays characteristics of a calcium-activated, nonselective cation channel with a unitary conductance of 25 pS. TRPM5 is a monovalent-specific, nonselective cation channel that carries Na+, K+, and Cs+ ions equally well, but not Ca2+ ions. It is directly activated by [Ca2+]i at concentrations of 0.3–1 μM, whereas higher concentrations are inhibitory, resulting in a bell-shaped dose–response curve. It activates and deactivates rapidly even during sustained elevations in [Ca2+]i, thereby inducing a transient membrane depolarization. TRPM5 does not simply mirror levels of [Ca2+]i, but instead responds to the rate of change in [Ca2+]i in that it requires rapid changes in [Ca2+]i to generate significant whole-cell currents, whereas slow elevations in [Ca2+]i to equivalent levels are ineffective. Moreover, we demonstrate that TRPM5 is not limited to taste signal transduction, because we detect the presence of TRPM5 in a variety of tissues and we identify endogenous TRPM5-like currents in a pancreatic beta cell line. TRPM5 can be activated physiologically by inositol 1,4,5-trisphosphate-producing receptor agonists, and it may therefore couple intracellular Ca2+ release to electrical activity and subsequent cellular responses.


Nature Genetics | 1996

Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene

Bärbel Dittrich; Karin Buiting; Bernd Korn; Sarah Rickard; Jessica L. Buxton; Shinji Saitoh; Robert D. Nicholls; Annemarie Poustka; Andreas Winterpacht; Bernhard Zabel; Bernhard Horsthemke

Imprinting on human chromosome 15 is regulated by an imprinting centre, which has been mapped to a 100–kb region including exon 1 of SNRPN. From this region we have identified novel transcripts, which represent alternative transcripts of the SNRPN gene. The novel exons lack protein coding potential and are expressed from the paternal chromosome only. We have also identified intragenic deletions and a point mutation in patients who have Angelman or Prader–Willi syndrome due to a parental imprint switch failure. This suggests that imprint switching on human chromosome 15 may involve alternative SNRPN transcripts.


Nature Genetics | 2000

Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I.

P. Momeni; G. Glöckner; O. Schmidt; D. Von Holtum; Beate Albrecht; Gabriele Gillessen-Kaesbach; Raoul C. M. Hennekam; P. Meinecke; Bernhard Zabel; A. Rosenthal; Bernhard Horsthemke; Hermann-Josef Lüdecke

Tricho-rhino-phalangeal syndrome type I (TRPS I, MIM 190350) is a malformation syndrome characterized by craniofacial and skeletal abnormalities and is inherited in an autosomal dominant manner. TRPS I patients have sparse scalp hair, a bulbous tip of the nose, a long flat philtrum, a thin upper vermilion border and protruding ears. Skeletal abnormalities include cone-shaped epiphyses at the phalanges, hip malformations and short stature. We assigned TRPS1 to human chromosome 8q24. It maps proximal of EXT1, which is affected in a subgroup of patients with multiple cartilaginous exostoses and deleted in all patients with TRPS type II (TRPS II, or Langer-Giedion syndrome, MIM 150230; ref.2–5). We have positionally cloned a gene that spans the chromosomal breakpoint of two patients with TRPS I and is deleted in five patients with TRPS I and an interstitial deletion. Northern-blot analyses revealed transcripts of 7 and 10.5 kb. TRPS1has seven exons and an ORF of 3,843 bp. The predicted protein sequence has two potential nuclear localization signals and an unusual combination of different zinc-finger motifs, including IKAROS-like and GATA-binding sequences. We identified six different nonsense mutations in ten unrelated patients. Our findings suggest that haploinsufficiency for this putative transcription factor causes TRPS I.


European Journal of Pediatrics | 1994

The type II collagenopathies: a spectrum of chondrodysplasias.

Jürgen W. Spranger; A. Winterpacht; Bernhard Zabel

With the application of molecular techniques the aetiopathogenesis of skeletal dysplasias is gradually elucidated. Recent advances show that some bone dysplasias result from defects in the biosynthesis of type II (cartilage) collagen. Clinical entities caused by mutations in the COL2A1 gene coding for type II collagen comprise achondrogenesis II, hypochondrogenesis, spondylo-epiphyseal dysplasia congenita, Kniest dysplasia, Stickler arthro-opthalmopathy and mild dominant spondyloarthropathy. The mutations are expressed in the heterozygous state, and inheritance of type II collagenopathies is autosomal dominant. The wide range of clinical manifestations is not well understood but characterization of the basic defect may provide clues to establish specific genotype-phenotype correlations.

Collaboration


Dive into the Bernhard Zabel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Winterpacht

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Winterpacht

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge