Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernice Lo is active.

Publication


Featured researches published by Bernice Lo.


Science | 2015

Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy

Bernice Lo; Kejian Zhang; Wei Lu; Lixin Zheng; Qian Zhang; Chrysi Kanellopoulou; Yu Zhang; Zhiduo Liu; Jill M. Fritz; Rebecca A. Marsh; Ammar Husami; Diane Kissell; Shannon Nortman; Vijaya Chaturvedi; Hilary Haines; Lisa R. Young; Jun Mo; Alexandra H. Filipovich; Jack Bleesing; Peter Mustillo; Michael Stephens; Cesar M. Rueda; Claire A. Chougnet; Kasper Hoebe; Joshua McElwee; Jason D. Hughes; Elif Karakoc-Aydiner; Helen F. Matthews; Susan Price; Helen C. Su

Trafficking from bedside to bench Typically in translational research, a discovery in cell or molecular biology is later exploited to improve patient care. Occasionally, information flows in the opposite direction. Lo et al. found that patients with an autoimmune disorder caused by deficiency of a protein called LRBA responded dramatically to the drug abatacept (see the Perspective by Sansom). Abatacept contains a segment of a potent inhibitory immune receptor, CTLA4. Experiments prompted by this observation revealed the relationship between the two proteins: LRBA controls the intracellular trafficking and degradation of CTLA4. This information may further improve patient care, because other clinically approved drugs have the desired mechanism of action with potentially fewer side effects. Science, this issue p. 436; see also p. 377 A rare autoimmune disorder is caused by aberrant degradation of a potent inhibitory immune receptor. [Also see Perspective by Sansom] Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)–immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3+ regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.


Blood | 2014

Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations

Susan Price; Pamela A. Shaw; Amy E. Seitz; Gyan Joshi; Joie Davis; Julie E. Niemela; Katie Perkins; Ronald L. Hornung; Les R. Folio; Philip S. Rosenberg; Jennifer M. Puck; Amy P. Hsu; Bernice Lo; Stefania Pittaluga; Elaine S. Jaffe; Thomas A. Fleisher; V. Koneti Rao; Michael J. Lenardo

Autoimmune lymphoproliferative syndrome (ALPS) presents in childhood with nonmalignant lymphadenopathy and splenomegaly associated with a characteristic expansion of mature CD4 and CD8 negative or double negative T-cell receptor αβ(+) T lymphocytes. Patients often present with chronic multilineage cytopenias due to autoimmune peripheral destruction and/or splenic sequestration of blood cells and have an increased risk of B-cell lymphoma. Deleterious heterozygous mutations in the FAS gene are the most common cause of this condition, which is termed ALPS-FAS. We report the natural history and pathophysiology of 150 ALPS-FAS patients and 63 healthy mutation-positive relatives evaluated in our institution over the last 2 decades. Our principal findings are that FAS mutations have a clinical penetrance of <60%, elevated serum vitamin B12 is a reliable and accurate biomarker of ALPS-FAS, and the major causes of morbidity and mortality in these patients are the overwhelming postsplenectomy sepsis and development of lymphoma. With longer follow-up, we observed a significantly greater relative risk of lymphoma than previously reported. Avoiding splenectomy while controlling hypersplenism by using corticosteroid-sparing treatments improves the outcome in ALPS-FAS patients. This trial was registered at www.clinicaltrials.gov as #NCT00001350.


Journal of Immunology | 2008

Alveolar Epithelial Type II Cells Induce T Cell Tolerance to Specific Antigen

Bernice Lo; Søren Hansen; Kathy Evans; John K. Heath; Jo Rae Wright

The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells. Purified murine Type II cells were unable to activate T cells to specific Ag or in an alloreactive assay. Although IFN-γ treatment up-regulated class II MHC expression, it did not alter the ability of the Type II cells to activate T cells. Rather, the Type II cells were able to suppress T cells from subsequent activation to specific Ag in an Ag-dependent manner. Priming T cells with Type II cells and Ag resulted in T cells that were suppressed to further activation, even after removal from the Type II cells. Thus, Type II cells of the lung help tolerize T cells to nonpathogenic environmental Ags.


Journal of Immunology | 2011

Lung Effector Memory and Activated CD4+ T Cells Display Enhanced Proliferation in Surfactant Protein A-Deficient Mice during Allergen-Mediated Inflammation

Amy M. Pastva; Sambuddho Mukherjee; Charles Giamberardino; Bethany J. Hsia; Bernice Lo; Gregory D. Sempowski; Jo Rae Wright

Although many studies have shown that pulmonary surfactant protein (SP)-A functions in innate immunity, fewer studies have addressed its role in adaptive immunity and allergic hypersensitivity. We hypothesized that SP-A modulates the phenotype and prevalence of dendritic cells (DCs) and CD4+ T cells to inhibit Th2-associated inflammatory indices associated with allergen-induced inflammation. In an OVA model of allergic hypersensitivity, SP-A−/− mice had greater eosinophilia, Th2-associated cytokine levels, and IgE levels compared with wild-type counterparts. Although both OVA-exposed groups had similar proportions of CD86+ DCs and Foxp3+ T regulatory cells, the SP-A−/− mice had elevated proportions of CD4+ activated and effector memory T cells in their lungs compared with wild-type mice. Ex vivo recall stimulation of CD4+ T cell pools demonstrated that cells from the SP-A−/− OVA mice had the greatest proliferative and IL-4–producing capacity, and this capability was attenuated with exogenous SP-A treatment. Additionally, tracking proliferation in vivo demonstrated that CD4+ activated and effector memory T cells expanded to the greatest extent in the lungs of SP-A−/− OVA mice. Taken together, our data suggested that SP-A influences the prevalence, types, and functions of CD4+ T cells in the lungs during allergic inflammation and that SP deficiency modifies the severity of inflammation in allergic hypersensitivity conditions like asthma.


Journal of Translational Medicine | 2011

Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status

Bernice Lo; Austin Swafford; Kimberly A. Shafer-Weaver; Lawrence F. Jerome; Luba Rakhlin; Douglas R. Mathern; Conor A Callahan; Ping Jiang; L. J. Davison; Helen Stevens; Carrie L. Lucas; Jill White; Reid von Borstel; John A. Todd; Michael J. Lenardo

BackgroundThe detection of insulin autoantibodies (IAA) aids in the prediction of autoimmune diabetes development. However, the long-standing, gold standard 125I-insulin radiobinding assay (RBA) has low reproducibility between laboratories, long sample processing times and requires the use of newly synthesized radiolabeled insulin for each set of assays. Therefore, a rapid, non-radioactive, and reproducible assay is highly desirable.MethodsWe have developed electrochemiluminescence (ECL)-based assays that fulfill these criteria in the measurement of IAA and anti-insulin antibodies (IA) in non-obese diabetic (NOD) mice and in type 1 diabetic individuals, respectively. Using the murine IAA ECL assay, we examined the correlation between IAA, histopathological insulitis, and blood glucose in a cohort of female NOD mice from 4 up to 36 weeks of age. We developed a human IA ECL assay that we compared to conventional RBA and validated using samples from 34 diabetic and 59 non-diabetic individuals in three independent laboratories.ResultsOur ECL assays were rapid and sensitive with a broad dynamic range and low background. In the NOD mouse model, IAA levels measured by ECL were positively correlated with insulitis severity, and the values measured at 8-10 weeks of age were predictive of diabetes onset. Using human serum and plasma samples, our IA ECL assay yielded reproducible and accurate results with an average sensitivity of 84% at 95% specificity with no statistically significant difference between laboratories.ConclusionsThese novel, non-radioactive ECL-based assays should facilitate reliable and fast detection of antibodies to insulin and its precursors sera and plasma in a standardized manner between laboratories in both research and clinical settings. Our next step is to evaluate the human IA assay in the detection of IAA in prediabetic subjects or those at risk of type 1 diabetes and to develop similar assays for other autoantibodies that together are predictive for the diagnosis of this common disorder, in order to improve prediction and facilitate future therapeutic trials.


Annual Review of Immunology | 2016

Genomics of Immune Diseases and New Therapies

Michael J. Lenardo; Bernice Lo; Carrie L. Lucas

Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.


Journal of Immunology | 2010

Surfactant Protein-A Inhibits Mycoplasma-Induced Dendritic Cell Maturation through Regulation of HMGB-1 Cytokine Activity

Julie G. Ledford; Bernice Lo; Michele M. Kislan; Joseph M. Thomas; Kathy Evans; Derek W. Cain; Monica Kraft; Kristi L. Williams; Jo Rae Wright

During pulmonary infections, a careful balance between activation of protective host defense mechanisms and potentially injurious inflammatory processes must be maintained. Surfactant protein A (SP-A) is an immune modulator that increases pathogen uptake and clearance by phagocytes while minimizing lung inflammation by limiting dendritic cell (DC) and T cell activation. Recent publications have shown that SP-A binds to and is bacteriostatic for Mycoplasma pneumoniae in vitro. In vivo, SP-A aids in maintenance of airway homeostasis during M. pneumoniae pulmonary infection by preventing an overzealous proinflammatory response mediated by TNF-α. Although SP-A was shown to inhibit maturation of DCs in vitro, the consequence of DC/SP-A interactions in vivo has not been elucidated. In this article, we show that the absence of SP-A during M. pneumoniae infection leads to increased numbers of mature DCs in the lung and draining lymph nodes during the acute phase of infection and, consequently, increased numbers of activated T and B cells during the course of infection. The findings that glycyrrhizin, a specific inhibitor of extracellular high-mobility group box-1 (HMGB-1) abrogated this effect and that SP-A inhibits HMGB-1 release from immune cells suggest that SP-A inhibits M. pneumoniae-induced DC maturation by regulating HMGB-1 cytokine activity.


Current Opinion in Immunology | 2017

Lessons from CTLA-4 deficiency and checkpoint inhibition.

Bernice Lo; Ussama M. Abdel-Motal

CTLA-4 is a crucial negative regulator of immune responses. Absence of CTLA-4 in mice causes autoimmunity and lethal multiorgan lymphocytic infiltration and tissue destruction. Recently, heterozygous CTLA4 or biallelic LRBA mutations leading to functional CTLA-4 deficiency and autoimmunity have been discovered. LRBA was identified as a novel regulator of steady-state CTLA-4 protein levels in Tregs and activated T cells. CTLA-4 deficiency due to checkpoint blockade cancer immunotherapy has also been found to lead to autoimmune reactions. Studies investigating the variable efficacy and adverse autoimmune responses to checkpoint therapy elucidated a role of the microbiota in promoting antitumor and autoreactive immune responses that are regulated by CTLA-4.


Journal of Clinical Immunology | 2013

A Rapid Ex Vivo Clinical Diagnostic Assay for Fas Receptor-Induced T Lymphocyte Apoptosis

Bernice Lo; Madhu Ramaswamy; Joie Davis; Susan Price; V. Koneti Rao; Richard M. Siegel; Michael J. Lenardo

Deleterious mutations in genes involved in the Fas apoptosis pathway lead to Autoimmune Lymphoproliferative Syndrome (ALPS). Demonstration of an apoptosis defect is critical for the diagnosis and study of ALPS. The traditional in vitro apoptosis assay, however, requires a week of experimental procedures. Here, we show that defects in Fas-induced apoptosis in PBMCs can be evaluated directly ex vivo using multicolor flow cytometry to analyze the apoptosis of effector memory T cells, a Fas-sensitive subset of PBMCs. This method allowed us to sensitively quantify defective apoptosis in ALPS patients within a few hours. Some ALPS patients (ALPS-sFAS) without germline mutations have somatic mutations in Fas specifically in double-negative αβ T cells (DNTs), an unusual lymphocyte population that is characteristically expanded in ALPS. Since DNTs have been notoriously difficult to culture, defective apoptosis has not been previously demonstrated for ALPS-sFAS patients. Using our novel ex vivo apoptosis assay, we measured Fas-induced apoptosis of DNTs for the first time and found that ALPS-sFAS patients had significant apoptosis defects in these cells compared to healthy controls. Hence, this rapid apoptosis assay can expedite the diagnosis of new ALPS patients, including those with somatic mutations, and facilitate clinical and molecular investigation of these diseases.


Nature Genetics | 2016

The requirement of iron transport for lymphocyte function.

Bernice Lo

Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.

Collaboration


Dive into the Bernice Lo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Lenardo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Price

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen C. Su

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Koneti Rao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge