Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernt Popp is active.

Publication


Featured researches published by Bernt Popp.


Nature Genetics | 2010

Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes

Sabine Endele; Georg Rosenberger; Kirsten Geider; Bernt Popp; Ceyhun Tamer; Irina Stefanova; Mathieu Milh; Fanny Kortüm; Angela Fritsch; Friederike K. Pientka; Yorck Hellenbroich; Vera M. Kalscheuer; Jürgen Kohlhase; Ute Moog; Gudrun Rappold; Anita Rauch; Hans-Hilger Ropers; Sarah von Spiczak; Holger Tönnies; Nathalie Villeneuve; Laurent Villard; Bernhard Zabel; Martin Zenker; Bodo Laube; André Reis; Dagmar Wieczorek; Lionel Van Maldergem; Kerstin Kutsche

N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2+-permeable cation channels which are blocked by extracellular Mg2+ in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2AN615K (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2+ block and a decrease in Ca2+ permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.


American Journal of Human Genetics | 2012

Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability.

Juliane Hoyer; Arif B. Ekici; Sabine Endele; Bernt Popp; Christiane Zweier; Antje Wiesener; Eva Wohlleber; Andreas Dufke; Eva Rossier; Corinna Petsch; Markus Zweier; Ina Göhring; Alexander M. Zink; Gudrun Rappold; Evelin Schröck; Dagmar Wieczorek; Olaf Riess; Hartmut Engels; Anita Rauch; André Reis

Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887 unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects are an important contributor to neurodevelopmental disorders.


European Journal of Human Genetics | 2015

De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females

Bernt Popp; Svein Isungset Støve; Sabine Endele; Line M. Myklebust; Juliane Hoyer; Heinrich Sticht; Silvia Azzarello-Burri; Anita Rauch; Thomas Arnesen; André Reis

Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity.


PLOS ONE | 2014

CUSHAW3: sensitive and accurate base-space and color-space short-read alignment with hybrid seeding.

Yongchao Liu; Bernt Popp; Bertil Schmidt

The majority of next-generation sequencing short-reads can be properly aligned by leading aligners at high speed. However, the alignment quality can still be further improved, since usually not all reads can be correctly aligned to large genomes, such as the human genome, even for simulated data. Moreover, even slight improvements in this area are important but challenging, and usually require significantly more computational endeavor. In this paper, we present CUSHAW3, an open-source parallelized, sensitive and accurate short-read aligner for both base-space and color-space sequences. In this aligner, we have investigated a hybrid seeding approach to improve alignment quality, which incorporates three different seed types, i.e. maximal exact match seeds, exact-match k-mer seeds and variable-length seeds, into the alignment pipeline. Furthermore, three techniques: weighted seed-pairing heuristic, paired-end alignment pair ranking and read mate rescuing have been conceived to facilitate accurate paired-end alignment. For base-space alignment, we have compared CUSHAW3 to Novoalign, CUSHAW2, BWA-MEM, Bowtie2 and GEM, by aligning both simulated and real reads to the human genome. The results show that CUSHAW3 consistently outperforms CUSHAW2, BWA-MEM, Bowtie2 and GEM in terms of single-end and paired-end alignment. Furthermore, our aligner has demonstrated better paired-end alignment performance than Novoalign for short-reads with high error rates. For color-space alignment, CUSHAW3 is consistently one of the best aligners compared to SHRiMP2 and BFAST. The source code of CUSHAW3 and all simulated data are available at http://cushaw3.sourceforge.net.


Human Mutation | 2016

Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency

Chloé Saunier; Svein Isungset Støve; Bernt Popp; Bénédicte Gérard; Marina Blenski; Nicholas AhMew; Charlotte de Bie; Paula Goldenberg; Bertrand Isidor; Boris Keren; Bruno Leheup; Laetitia Lampert; Cyril Mignot; Kamer Tezcan; Grazia M.S. Mancini; Caroline Nava; Melissa P. Wasserstein; Ange Line Bruel; Julien Thevenon; Alice Masurel; Yannis Duffourd; Paul Kuentz; Frédéric Huet; Jean Baptiste Rivière; Marjon van Slegtenhorst; Laurence Faivre; Amélie Piton; André Reis; Thomas Arnesen; Christel Thauvin-Robinet

N‐terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N‐terminal acetylation complex NatA have been associated with diverse, syndromic X‐linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X‐inactivation was random in five females. The core phenotype of X‐linked NAA10‐related N‐terminal‐acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype–phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X‐inactivation in females.


Scientific Reports | 2015

DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects

Kristin Kessler; Ina Wunderlich; Steffen Uebe; Nathalie Falk; Andreas Gießl; Johann Helmut Brandstätter; Bernt Popp; Patricia Klinger; Arif B. Ekici; Heinrich Sticht; Helmuth Günther Dörr; André Reis; Ronald Roepman; Eva Seemanova; Christian Thiel

Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex.


American Journal of Human Genetics | 2016

Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features.

Anide Johansen; Rasim Ozgur Rosti; Damir Musaev; Evan Sticca; Ricardo Harripaul; Maha S. Zaki; Ahmet Okay Çağlayan; Matloob Azam; Tipu Sultan; Tawfiq Froukh; André Reis; Bernt Popp; Iltaf Ahmed; Peter John; Muhammad Ayub; Tawfeg Ben-Omran; John B. Vincent; Joseph G. Gleeson; Rami Abou Jamra

The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.


European Journal of Human Genetics | 2017

Exome Pool-Seq in neurodevelopmental disorders

Bernt Popp; Arif B. Ekici; Christian Thiel; Juliane Hoyer; Antje Wiesener; Cornelia Kraus; André Reis; Christiane Zweier

High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.


Scientific Reports | 2018

Single molecule real time sequencing in ADTKD- MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations

Andrea Wenzel; Janine Altmueller; Arif B. Ekici; Bernt Popp; Kurt Stueber; Holger Thiele; Alois Pannes; Simon Staubach; Eduardo Salido; Peter Nuernberg; Richard Reinhardt; André Reis; Patrick Rump; Franz-Georg Hanisch; Matthias Wolf; Michael S. Wiesener; Bruno Huettel; Bodo B. Beck

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n = 9) and negative (n = 7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


Genetics in Medicine | 2018

Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature

Nadine N. Hauer; Bernt Popp; Eva Schoeller; Sarah Schuhmann; Karen E. Heath; Patricia Klinger; Cornelia Kraus; Udo Trautmann; Martin Zenker; Christiane Zweier; Antje Wiesener; Rami Abou Jamra; Erdmute Kunstmann; Dagmar Wieczorek; Steffen Uebe; Fulvia Ferrazzi; Christian Büttner; Arif B. Ekici; Anita Rauch; Heinrich Sticht; H. G. Dörr; André Reis; Christian Thiel

PurposeShort stature is a common condition of great concern to patients and their families. Mostly genetic in origin, the underlying cause often remains elusive due to clinical and genetic heterogeneity.MethodsWe systematically phenotyped 565 patients where common nongenetic causes of short stature were excluded, selected 200 representative patients for whole-exome sequencing, and analyzed the identified variants for pathogenicity and the affected genes regarding their functional relevance for growth.ResultsBy standard targeted diagnostic and phenotype assessment, we identified a known disease cause in only 13.6% of the 565 patients. Whole-exome sequencing in 200 patients identified additional mutations in known short-stature genes in 16.5% of these patients who manifested only part of the symptomatology. In 15.5% of the 200 patients our findings were of significant clinical relevance. Heterozygous carriers of recessive skeletal dysplasia alleles represented 3.5% of the cases.ConclusionA combined approach of systematic phenotyping, targeted genetic testing, and whole-exome sequencing allows the identification of the underlying cause of short stature in at least 33% of cases, enabling physicians to improve diagnosis, treatment, and genetic counseling. Exome sequencing significantly increases the diagnostic yield and consequently care in patients with short stature.

Collaboration


Dive into the Bernt Popp's collaboration.

Top Co-Authors

Avatar

André Reis

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Arif B. Ekici

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian Thiel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christiane Zweier

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Endele

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antje Wiesener

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Cornelia Kraus

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Juliane Hoyer

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge