Bert Conings
University of Hasselt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bert Conings.
Advanced Materials | 2014
Bert Conings; Linny Baeten; Christopher De Dobbelaere; Jan D'Haen; Jean Manca; Hans-Gerd Boyen
Organometal halide perovskites have tremendous potential as light absorbers for photovoltaic applications. In this work we demonstrate hybrid solar cells based on the mixed perovskite CH3 NH3 PbI2 Cl in a thin film sandwich structure, with unprecedented reproducibility and generating efficiencies up to 10.8%. The successfulness of our approach is corroborated by the experimental electronic structure determination of this perovskite.
Science | 2016
Giles E. Eperon; Tomas Leijtens; Kevin A. Bush; Rohit Prasanna; Thomas Green; Jacob Tse-Wei Wang; David P. McMeekin; George Volonakis; Rebecca L. Milot; Richard May; Axel F. Palmstrom; Daniel J. Slotcavage; Rebecca A. Belisle; Jay B. Patel; Elizabeth S. Parrott; Rebecca J. Sutton; Wen Ma; Farhad Moghadam; Bert Conings; Aslihan Babayigit; Hans-Gerd Boyen; Stacey F. Bent; Feliciano Giustino; Laura M. Herz; Michael B. Johnston; Michael D. McGehee; Henry J. Snaith
Tandem perovskite cells The ready processability of organic-inorganic perovskite materials for solar cells should enable the fabrication of tandem solar cells, in which the top layer is tuned to absorb shorter wavelengths and the lower layer to absorb the remaining longer-wavelength light. The difficulty in making an all-perovskite cell is finding a material that absorbs the red end of the spectrum. Eperon et al. developed an infrared-absorbing mixed tin-lead material that can deliver 14.8% efficiency on its own and 20.3% efficiency in a four-terminal tandem cell. Science, this issue p. 861 A mixed tin-lead perovskite material with a narrow band gap enables efficient tandem solar cells. We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2–electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider–band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.
Nature Materials | 2016
Aslihan Babayigit; Anitha Ethirajan; Marc Muller; Bert Conings
In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.
Advanced Materials | 2011
Linny Baeten; Bert Conings; Hans-Gerd Boyen; Jan D'Haen; An Hardy; Marc D'olieslaeger; Jean Manca; Marlies K. Van Bael
L.B. and B.C. contributed equally to this work. The authors thank R. Rieke from Rieke Metals for useful suggestions. This work was financially supported by BOF, UHasselt, the Flemish Odysseus program, and the Interreg project Organext. A. H. is a postdoctoral research fellow of the Research Foundation-Flanders (FWO Vlaanderen).
Scientific Reports | 2016
Aslihan Babayigit; Dinh Duy Thanh; Anitha Ethirajan; Jean Manca; Marc Muller; Hans-Gerd Boyen; Bert Conings
Intensive development of organometal halide perovskite solar cells has lead to a dramatic surge in power conversion efficiency up to 20%. Unfortunately, the most efficient perovskite solar cells all contain lead (Pb), which is an unsettling flaw that leads to severe environmental concerns and is therefore a stumbling block envisioning their large-scale application. Aiming for the retention of favorable electro-optical properties, tin (Sn) has been considered the most likely substitute. Preliminary studies have however shown that Sn-based perovskites are highly unstable and, moreover, Sn is also enlisted as a harmful chemical, with similar concerns regarding environment and health. To bring more clarity into the appropriateness of both metals in perovskite solar cells, we provide a case study with systematic comparison regarding the environmental impact of Pb- and Sn-based perovskites, using zebrafish (Danio Rerio) as model organism. Uncovering an unexpected route of intoxication in the form of acidification, it is shown that Sn based perovskite may not be the ideal Pb surrogate.
Journal of Materials Chemistry | 2015
Weiming Qiu; Ulrich W. Paetzold; Robert Gehlhaar; Vladimir Smirnov; Hans-Gerd Boyen; Jeffrey G. Tait; Bert Conings; Weimin Zhang; Christian B. Nielsen; Iain McCulloch; Ludo Froyen; Paul Heremans; David Cheyns
The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as an electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, perovskite solar cells based on CH3NH3PbI3−xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that the pinholes in the thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.
Advanced Materials | 2016
Bert Conings; Aslihan Babayigit; Matthew T. Klug; Sai Bai; Nicolas Gauquelin; Nobuya Sakai; Jacob Tse-Wei Wang; Johan Verbeeck; Hans-Gerd Boyen; Henry J. Snaith
A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.
Chemistry: A European Journal | 2013
Florian Rechenmacher; Stefanie Neubauer; Carlos Mas‐Moruno; Petra M. Dorfner; Julien Polleux; Judith Guasch; Bert Conings; Hans-Gerd Boyen; Alexander Bochen; Tariq R. Sobahi; Rainer Burgkart; Joachim P. Spatz; Reinhard Fässler; Horst Kessler
We present a click chemistry-based molecular toolkit for the biofunctionalization of materials to selectively control integrin-mediated cell adhesion. To this end, α5β1-selective RGD peptidomimetics were covalently immobilized on Ti-based materials, and the capacity to promote the selective binding of α5β1 was evaluated using a solid-phase integrin binding assay. This functionalization strategy yielded surfaces with a nine-fold increased affinity for α5β1, in comparison to control samples, and total selectivity against the binding of the closely related integrin αvβ3. Moreover, our methodology allowed the screening of several phosphonic acid containing anchoring units to find the best spacer-anchor moiety required for establishing an efficient binding to titanium and to promote selective integrin binding. The integrin subtype specificity of these biofunctionalized surfaces was further examined in vitro by inducing selective adhesion of genetically modified fibroblasts, which express exclusively the α5β1 integrin. The versatility of our molecular toolkit was proven by shifting the cellular specificity of the materials from α5β1- to αvβ3-expressing fibroblasts by using an αvβ3-selective peptidomimetic as coating molecule. The results shown here represent the first functionalization of Ti-based materials with α5β1- or αvβ3-selective peptidomimetics that allow an unprecedented control to discriminate between α5β1- and αvβ3-mediated adhesions. The role of these two integrins in different biological events is still a matter of debate and is frequently discussed in literature. Thus, such bioactive titanium surfaces will be of great relevance for the study of integrin-mediated cell adhesion and the development of new biomaterials targeting specific cell types.
Journal of Photonics for Energy | 2014
Ilaria Cardinaletti; Jurgen Kesters; Sabine Bertho; Bert Conings; Fortunato Piersimoni; J. D’Haen; Laurence Lutsen; Milos Nesladek; Bruno Van Mele; Guy Van Assche; Koen Vandewal; Alberto Salleo; Dirk Vanderzande; Wouter Maes; Jean Manca
Abstract. When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups.
Journal of the American Chemical Society | 2017
Rohit Prasanna; Aryeh Gold-Parker; Tomas Leijtens; Bert Conings; Aslihan Babayigit; Hans Gerd Boyen; Michael F. Toney; Michael D. McGehee
Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.