Bert De Groef
La Trobe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bert De Groef.
General and Comparative Endocrinology | 2002
Veerle Darras; Serge Van der Geyten; Clara Cox; Ilse Segers; Bert De Groef; Eduard Kühn
In amphibians, there is a close interaction between the interrenal and the thyroidal axes. Hypothalamic corticotropin-releasing hormone or related peptides stimulate thyroidal activity by increasing thyrotropin synthesis and release, while corticosterone accelerates both spontaneous and thyroid hormone-induced metamorphosis. One of the mechanisms that is thought to contribute to this acceleration is a corticosterone-induced change in peripheral deiodinating activity. The present experiments were designed to investigate further the effects of glucocorticoid treatment on amphibian deiodinase activities and to explore the possible role of these effects in metamorphosis. Neotenic axolotls (Ambystoma mexicanum) were treated either acutely or chronically with dexamethasone (DEX) and changes in type II and type III iodothyronine deiodinase (D2 and D3) activities were studied in liver, kidney, and brain. In addition, gill length, tail height, and body weight were measured at regular intervals in the chronically treated animals in search of metamorphosis-related changes. A single injection of 50 microg DEX decreased hepatic D3 activity (6-48 h) while it increased D2 activity in brain (6-48 h) and to a lesser extent in kidney (24 h). These changes were accompanied by an increase in plasma T(3) levels (48 h). Samples taken during chronic treatment with 20 or 100 microg DEX showed that both hepatic D2 and D3 activities were decreased on day 26, while renal D3 activity was decreased but only in the 20 microg dose group. All other deiodinase activities were not different from those in control animals. At 25 days, all DEX-treated axolotls showed a clear reduction in gill length, tail height, and body weight, changes typical of metamorphosis. Prolongation of the treatment up to 48 days resulted in complete gill resorption by days 44-60. Although probably several mechanisms contribute to these DEX-induced metamorphic changes, the interaction with thyroid function via a sustained downregulation of hepatic D3 may be one of them.
Journal of Thyroid Research | 2011
Veerle Darras; Stijn Van Herck; Marjolein Heijlen; Bert De Groef
Chicken and zebrafish are two model species regularly used to study the role of thyroid hormones in vertebrate development. Similar to mammals, chickens have one thyroid hormone receptor α (TRα) and one TRβ gene, giving rise to three TR isoforms: TRα, TRβ2, and TRβ0, the latter with a very short amino-terminal domain. Zebrafish also have one TRβ gene, providing two TRβ1 variants. The zebrafish TRα gene has been duplicated, and at least three TRα isoforms are expressed: TRαA1-2 and TRαB are very similar, while TRαA1 has a longer carboxy-terminal ligand-binding domain. All these TR isoforms appear to be functional, ligand-binding receptors. As in other vertebrates, the different chicken and zebrafish TR isoforms have a divergent spatiotemporal expression pattern, suggesting that they also have distinct functions. Several isoforms are expressed from the very first stages of embryonic development and early chicken and zebrafish embryos respond to thyroid hormone treatment with changes in gene expression. Future studies in knockdown and mutant animals should allow us to link the different TR isoforms to specific processes in embryonic development.
General and Comparative Endocrinology | 2012
Arnold De Loof; Marleen Lindemans; Feng Liu; Bert De Groef; Liliane Schoofs
Vertebrate releasing hormones include gonadotropin releasing hormone (GnRH), growth hormone releasing hormone (GHRH), corticotropin releasing hormone (CRF), and thyrotropin-releasing hormone (TRH). They are synthesized in the hypothalamus and stimulate the release of pituitary hormones. Here we review the knowledge on hormone releasing systems in the protostomian lineage. We address the question: do insects have peptides that may be phylogenetically related to an ancestral GnRH, GHRH, TRH, and CRF? Such endocrine archeology has become possible thanks to the growing list of fully sequenced genomes as well as to the continuously improving bioinformatic tool set. It has recently been shown that the ecdysozoan (nematodes and arthropods) adipokinetic hormones (AKHs), the lophotrochozoan (annelids and mollusks) GnRHs as well as the protochordate GnRHs are structurally related. The adipokinetic hormone precursor-related peptides (APRPs), in locusts encoded by the same gene that contains the AKH-coding region, have been forwarded as the structural counterpart of GHRH of vertebrates. CRF is relatively well conserved in insects, in which it functions as a diuretic hormone. Members of TRH-receptor family seem to have been conserved in some arthropods, but other elements of the thyroid hormone signaling system are not. A challenging idea is that in insects the functions of the thyroid hormones were taken over by juvenile hormone (JH). Our reconstruction suggests that, perhaps, the ancestral releasing hormone precursors played a role in controlling energy metabolism and water balance, and that releasing hormone functions as present in extant vertebrates were probably secondarily acquired.
Frontiers in Endocrinology | 2013
Bert De Groef; Sylvia V.H. Grommen; Veerle Darras
A major life stage transition in birds and other oviparous sauropsids is the hatching of the cleidoic egg. Not unlike amphibian metamorphosis, hatching in these species can be regarded as a transition from a relatively well-protected “aqueous” environment to a more hazardous and terrestrial life outside the egg, a transition in which thyroid hormones (THs) (often in concert with glucocorticoids) play an important role. In precocial birds such as the chicken, the perihatch period is characterized by peak values of THs. THs are implicated in the control of muscle development, lung maturation and the switch from chorioallantoic to pulmonary respiration, yolk sac retraction, gut development and induction of hepatic genes to accommodate the change in dietary energy source, initiation of thermoregulation, and the final stages of brain maturation as well as early post-hatch imprinting behavior. There is evidence that, at least for some of these processes, THs may have similar roles in non-avian sauropsids. In altricial birds such as passerines on the other hand, THs do not rise significantly until well after hatching and peak values coincide with the development of endothermy. It is not known how hatching-associated processes are regulated by hormones in these animals or how this developmental mode evolved from TH-dependent precocial hatching.
General and Comparative Endocrinology | 2003
Kris Geris; Bert De Groef; Eduard Kühn; Veerle Darras
Recent research has shown that in the chicken important interactions take place between the adrenal and the thyroidal axis both at the central and the peripheral level. In vivo as well as in vitro experiments showed that ovine corticotropin-releasing hormone (oCRH) clearly increases thyrotropin (TSH) secretion in late embryonic and early posthatch chicks. In vivo experiments in older chickens, however, suggested that this response might disappear at a later stage. Therefore we started to study in detail the ontogeny of the TSH releasing activity of oCRH using the in vitro perifusion technique. Several embryonic stages (E14, E16, and E18) as well as posthatch stages (C1, C8, C22, and adult chickens) were included in the study. We also investigated the possible regulatory role of somatostatin (SRIH) in this specific endocrine function of CRH. The perifusion studies show that CRH stimulated the TSH release at all stages tested. The 10 and 100 nM oCRH doses were almost equally effective at the early embryonic stages while in most posthatch stages the higher oCRH dose was significantly more effective than the lower one. The stimulation factor, representative for the relative increase in TSH secretion following oCRH challenge, was high at early embryonic stages and clearly lower in adult animals. This seemed to be related to an age-dependent increase in basal TSH secretion levels. In both embryonic (E19) and posthatch (C8) chicks a pretreatment of the pituitaries with SRIH lowered the sensitivity of the thyrotropes to an oCRH challenge. This effect was more pronounced in the posthatch chicks compared to the embryos. The results show that CRH is capable of stimulating the TSH secretion during the entire life cycle of the chicken and that SRIH may play an important role in the fine-tuning of this response by lowering the sensitivity of the thyrotropes to CRH.
PLOS ONE | 2015
Cesar E. Guzman; Lara Bereza-Malcolm; Bert De Groef; Ashley E. Franks
The microbial communities in the gastrointestinal tract of a young calf are essential for the anatomical and physiological development that permits a transition from milk to solid feed. Selected methanogens, fibrolytic bacteria, and proteobacteria were quantified in the rumen fluid and tissue, abomasum fluid, cecum fluid and tissue, and feces of Holstein bull calves on day 0 (0–20 mins after birth), day 1 (24 ± 1 h after birth), day 2 (48 ± 1 h after birth), and day 3 (72 ± 1 h after birth). Methanogens, fibrolytic bacteria, and Geobacter spp. were found to be already present from birth, indicating that microbial colonization of the gastrointestinal tract occurred before or during delivery. The abundance of methanogens and Geobacter spp. differed between the days tested and between compartments of the digestive tract and feces, but such difference was not observed for fibrolytic bacteria. Our findings suggests that methanogens might have an alternative hydrogen provider such as Geobacter spp. during these early stages of postnatal development. In addition, fibrolytic bacteria were present in the rumen well before the availability of fibrous substrates, suggesting that they might use nutrients other than cellulose and hemicellose.
Journal of Endocrinology | 2008
Sylvia V.H. Grommen; Lutgarde Arckens; Tim Theuwissen; Veerle Darras; Bert De Groef
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Journal of Endocrinology | 2016
Almas R. Juma; Pauliina Damdimopoulou; Sylvia V.H. Grommen; Wim J.M. Van de Ven; Bert De Groef
Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.
Animal Science Journal | 2016
Cesar E. Guzman; Lara Bereza-Malcolm; Bert De Groef; Ashley E. Franks
Microbial communities are affected by diet and play a role in the successful transition from milk to a solid diet. The response of microorganisms in the gastrointestinal tract of Holstein bull calves to the uptake of milk with solid feed (control treatment; CT), or milk without solid feed (milk-only treatment; MT) during the first 3 weeks of life was investigated. Samples were collected from the rumen (fluid and tissue), abomasum (fluid), cecum (fluid and tissue) and feces at 7, 14 and 20 days of age. Calf weight was higher on days 14 and 20 in the MT than the CT. In the rumen at 14 days, the fibrolytic bacteria Fibrobacter succinogenes and Prevotella ruminicola increased in the CT and Ruminococcus flavefaciens increased in the MT. This suggests that R. flavefaciens is not strictly fibrolytic and that it might use milk as a substrate or other microbial species might supply a substrate. Diet affected methanogens, but this may have been due to an indirect effect via an association with Geobacter spp. or other syntrophic partners. The treatments also affected microorganisms in the abomasum, cecum and feces. Our results contribute to an understanding of diet, microbes in the gastrointestinal tract and weaning.
General and Comparative Endocrinology | 2016
Yugo Watanabe; Sylvia V.H. Grommen; Bert De Groef
Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions.