Bert E. Holmes
University of North Carolina at Asheville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bert E. Holmes.
Journal of Physical Chemistry A | 2011
Erin C. Enstice; Juliana R. Duncan; D. W. Setser; Bert E. Holmes
The recombination of CF(2)Cl and CH(2)F radicals was used to prepare CF(2)ClCH(2)F* molecules with 93 ± 2 kcal mol(-1) of vibrational energy in a room temperature bath gas. The observed unimolecular reactions in order of relative importance were: (1) 1,2-ClH elimination to give CF(2)═CHF, (2) isomerization to CF(3)CH(2)Cl by the interchange of F and Cl atoms and (3) 1,2-FH elimination to give E- and Z-CFCl═CHF. Since the isomerization reaction is 12 kcal mol(-1) exothermic, the CF(3)CH(2)Cl* molecules have 105 kcal mol(-1) of internal energy and they can eliminate HF to give CF(2)═CHCl, decompose by rupture of the C-Cl bond, or isomerize back to CF(2)ClCH(2)F. These data, which provide experimental rate constants, are combined with previously published results for chemically activated CF(3)CH(2)Cl* formed by the recombination of CF(3) and CH(2)Cl radicals to provide a comprehensive view of the CF(3)CH(2)Cl* ↔ CF(2)ClCH(2)F* unimolecular reaction system. The experimental rate constants are matched to calculated statistical rate constants to assign threshold energies for the observed reactions. The models for the molecules and transition states needed for the rate constant calculations were obtained from electronic structures calculated from density functional theory. The previously proposed explanation for the formation of CF(2)═CHF in thermal and infrared multiphoton excitation studies of CF(3)CH(2)Cl, which was 2,2-HCl elimination from CF(3)CH(2)Cl followed by migration of the F atom in CF(3)CH, should be replaced by the Cl/F interchange reaction followed by a conventional 1,2-ClH elimination from CF(2)ClCH(2)F. The unimolecular reactions are augmented by free-radical chemistry initiated by reactions of Cl and F atoms in the thermal decomposition of CF(3)CH(2)Cl and CF(2)ClCH(2)F.
Journal of Physical Chemistry A | 2010
Juliana R. Duncan; Sarah A. Solaka; D. W. Setser; Bert E. Holmes
The recombination of CH(2)Cl and CH(2)F radicals generates vibrationally excited CH(2)ClCH(2)Cl, CH(2)FCH(2)F, and CH(2)ClCH(2)F molecules with about 90 kcal mol(-1) of energy in a room temperature bath gas. New experimental data for CH(2)ClCH(2)F have been obtained that are combined with previously published studies for C(2)H(4)Cl(2) and C(2)H(4)F(2) to define reliable rate constants of 3.0 x 10(8) (C(2)H(4)F(2)), 2.4 x 10(8) (C(2)H(4)Cl(2)), and 1.9 x 10(8) (CH(2)ClCH(2)F) s(-1) for HCl and HF elimination. The product branching ratio for CH(2)ClCH(2)F is approximately 1. These experimental rate constants are compared to calculated statistical rate constants (RRKM) to assign threshold energies for HF and HCl elimination. The calculated rate constants are based on transition-state models obtained from calculations of electronic structures; the energy levels of the asymmetric, hindered, internal rotation were directly included in the state counting to obtain a more realistic measure for the density of internal states for the molecules. The assigned threshold energies for C(2)H(4)F(2) and C(2)H(4)Cl(2) are both 63 +/- 2 kcal mol(-1). The threshold energies for CH(2)ClCH(2)F are 65 +/- 2 (HCl) and 63 +/- 2 (HF) kcal mol(-1). These threshold energies are 5-7 kcal mol(-1) higher than the corresponding values for C(2)H(5)Cl or C(2)H(5)F, and beta-substitution of F or Cl atoms raises threshold energies for HF or HCl elimination reactions. The treatment presented here for obtaining the densities of states and the entropy of activation from models with asymmetric internal rotations with high barriers can be used to judge the validity of using a symmetric internal-rotor approximation for other cases. Finally, threshold energies for the 1,2-fluorochloroethanes are compared to those of the 1,1-fluorochloroethanes to illustrate substituent effects on the relative energies of the isomeric transition states.
Journal of Physical Chemistry A | 2011
Caroline L. Parworth; Mary K. Tucker; Bert E. Holmes; George L. Heard
The 1,2-HX elimination reaction (where X = F, Cl, Br, OH) has been established as an important reaction in the degradation of compounds introduced into the upper atmosphere, including common CFC replacement compounds. By analyzing the electron densities of the transition state geometries of these reactions using QTAIM, we see that we can divide these reactions into two types. For HF and HOH elimination, the transition state is a complete ring of bonds, and neither the C-H nor the C-X bonds have been broken at the maximum of energy. There is very little accumulation of electron density on the X atom, with the majority of charge being lost by the hydrogen atom undergoing elimination, being transferred on to the two carbon atoms. In HCl and HBr elimination, a similar loss of electron density of the hydrogen atom is accompanied by significant accumulation of electron density on the X atom and a smaller change in electron density on the carbon atoms. The C-X bond is broken in the transition state geometry, with no ring critical point being present. This may explain the relative stabilities of halohydrocarbons and haloalcohols with respect to loss of H-X.
Tetrahedron Letters | 2003
Melinda R Beaver; George L. Heard; Bert E. Holmes
Abstract Theoretical calculations of the product percentage yields for the thermal decomposition of CHF 2 CH 2 Cl are consistent with the experimental percentage product yields supporting the proposal that the unexpected formation of 1,2-difluoroethene can be explained by a 1,2-FCl interchange converting CHF 2 CH 2 Cl into CHFClCH 2 F, which then undergoes a 2,1-HCl elimination. Thermal activation rate constants and threshold energy barriers for dominant reactions in this system were calculated. Theoretical product percentage yields varied greatly because different basis sets produced a wide range of threshold energy barriers, but the computational results were generally consistent with a recent experimental report.
Canadian Journal of Chemistry | 2010
William C.EverettW.C. Everett; Bert E. Holmes; George L. Heard
The 1,2-FCl rearrangement reaction of a series of haloethanes is investigated by comparisons of the optimized ground- and transition-state geometries. Investigation of the effect of level of theory...
Journal of Physical Chemistry A | 2008
Oksana Zaluzhna; Jay G. Simmons; D. W. Setser; Bert E. Holmes
The unimolecular reactions of CF(2)ClCFClCH(2)F and CF(2)ClCF(2)CH(2)Cl molecules formed with 87 and 91 kcal mol(-1), respectively, of vibrational energy from the recombination of CF(2)ClCFCl with CH(2)F and CF(2)ClCF(2) with CH(2)Cl at room temperature have been studied by the chemical activation technique. The 2,3- and 1,2-ClF interchange reactions compete with 2,3-ClH and 2,3-FH elimination reactions. The total unimolecular rate constant for CF(2)ClCF(2)CH(2)Cl is 0.54 +/- 0.15 x 10(4) s(-1) with branching fractions for 1,2-ClF interchange of 0.03 and 0.97 for 2,3-FH elimination. The total rate constant for CF(2)ClCFClCH(2)F is 1.35 +/- 0.39 x 10(4) s(-1) with branching fractions of 0.20 for 2,3-ClF interchange, 0.71 for 2,3-ClH elimination and 0.09 for 2,3-FH elimination; the products from 1,2-ClF interchange could be observed, but the rate constant was too small to be measured. The D(CH(2)F-CFClCF(2)Cl) and D(CH(2)Cl-CF(2)CF(2)Cl) were evaluated by calculations for some isodesmic reactions and isomerization energies of CF(3)CFClCH(2)Cl as 84 and 88 kcal mol(-1), respectively; these values give the average energies of formed molecules at 298 K as noted above. Density functional theory was used to assign vibrational frequencies and moments of inertia for the molecules and their transition states. These results were combined with statistical unimolecular reaction theory to assign threshold energies from the experimental rate constants for ClF interchange, ClH elimination and FH elimination. These assignments are compared with results from previous chemical activation experiments with CF(3)CFClCH(2)Cl, CF(3)CF(2)CH(3,) CF(3)CFClCH(3) and CF(2)ClCF(2)CH(3).
Journal of Physical Chemistry A | 2015
Leah N. Wormack; Meghan E. McGreal; Corey E. McClintock; George L. Heard; D. W. Setser; Bert E. Holmes
The recombination of CHF2 and C2D5 radicals was used to produce CD3CD2CHF2* molecules with 96 kcal mol(-1) of vibrational energy in a room temperature bath gas. The formation of CD3CD═CHF and CD3CD═CDF was used to identify the 1,2-DF and 1,1-HF unimolecular elimination channels; CD3CD═CDF is formed by isomerization of the singlet-state CD3CD2CF carbene. The total unimolecular rate constant is 1.6 × 10(6) s(-1), and the branching ratio for 1,1-HF elimination is 0.25. Threshold energies of 64 ± 2 and 73 ± 2 kcal mol(-1) were assigned to the 1,2-DF and 1,1-HF reaction channels. The E and Z isomers of 1-fluoropropene were observed for each reaction; approximately 30% of the CD3CD═CDF molecules derived from 1,1-HF elimination retained enough energy to undergo cis-trans isomerization. Electronic structure calculations with density-functional theory were used to characterize the transition-state structures and the H atom migration barrier for CD3CD2CF. Adjustment of the rate constants to account for kinetic-isotope effects suggest that the branching ratio would be 0.20 for 1,1-HF elimination from C2H5CHF2. The results from an earlier study of CD3CHF2 and CH3CHF2 are also reinterpreted to assign a threshold energy of 74 kcal mol(-1) for the 1,1-HF elimination reaction. Because CHF2CHF2* is generated in the photolysis system, the 1,1-and 1,2-HF-elimination reactions of CHF2CHF2* are discussed. The 1,1-HF channel was identified by trapping the CF2HCF carbene with cis-butene-2.
Journal of Physical Chemistry A | 2014
Martha A. Turpin; Kylie C. Smith; George L. Heard; D. W. Setser; Bert E. Holmes
The recombination of CCl3 radicals with CH3, CH3CH2, and CF3CH2 radicals was used to generate CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3 molecules with approximately 87 kcal mol(-1) of vibrational energy in a bath gas at room temperature. The competition between collisional deactivation and unimolecular reaction by HCl elimination was used to obtain the experimental rate constants for each molecule. These experimental rate constants were matched to calculated statistical unimolecular rate constants to assign threshold energies to the three HCl elimination reactions. The models needed for the calculations of the rate constants were obtained from molecular structure calculations using density functional theory (DFT) with the hybrid density-functional MO6-2X recommended by Truhlar for transition states. The assigned threshold energies are 52 ± 2, 50 ± 2, and 52 ± 2 kcal mol(-1) for CH3CCl3, CH3CH2CCl3, and CF3CH2CCl3, respectively, and the CH3 and CF3 groups have only a minor effect on the threshold energies for HCl elimination. The DFT calculated threshold energies are in agreement with the experimentally assigned values. The addition of Cl atoms to the same carbon atom lowers the threshold energy for HCl elimination in the CH3CH2Cl, CH3CHCl2, and CH3CCl3 series. This trend, which is the opposite of that for CH3CH2F, CH3CHF2, and CH3CF3, is discussed in terms of transition-state structure and correlated with the relative stabilities of CH3CH2(+), CH3CHCl(+), and CH3CCl2(+) ions; the relative stabilities are based on the hydride affinities obtained from calculations. Comparison of the reactions of CH3CCl3 and CH2ClCHCl2 shows that the threshold energy is much higher for the isomer with chlorine atoms on both carbon atoms.
Journal of Physical Chemistry A | 2013
Mary K. Tucker; Samuel M. Rossabi; Corey E. McClintock; George L. Heard; D. W. Setser; Bert E. Holmes
The room-temperature gas-phase recombination of CH2F and CD2Cl radicals was used to prepare CH2FCD2Cl molecules with 91 kcal mol(-1) of vibrational energy. Three unimolecular processes are in competition with collisional deactivation of CH2FCD2Cl; HCl and DF elimination to give CHF═CD2 and CH2═CDCl plus isomerization to give CH2ClCD2F by the interchange of F and Cl atoms. The Cl/F interchange reaction was observed, and the rate constant was assigned from measurement of CHCl═CD2 as a product, which is formed by HF elimination from CH2ClCD2F. These experiments plus previously published results from chemically activated CH2ClCH2F and electronic structure and RRKM calculations for the kinetic-isotope effects permit assignment of the three rate constants for CH2FCD2Cl (and for CH2ClCD2F). The product branching ratio for the interchange reaction versus elimination is 0.24 ± 0.04. Comparison of the experimental rate constant with the RRKM calculated rate constant permitted the assignment of a threshold energy of 62 ± 3 kcal mol(-1) for this type-1 dyotropic rearrangement. On the basis of electronic structure calculations, the nature of the transition state for the rearrangement reaction is discussed. The radical recombination reactions in the chemical system also generate vibrationally excited CD2ClCD2Cl and CH2FCH2F molecules, and the rate constants for DCl and HF elimination were measured in order to confirm that the photolysis of CD2ClI and (CH2F)2CO mixtures was giving reliable data for CH2FCD2Cl.
Journal of Physical Chemistry A | 2015
Timothy M. Brown; Matthew J. Nestler; Samuel M. Rossabi; George L. Heard; D. W. Setser; Bert E. Holmes
Vibrationally excited CD3CHFCl molecules with 96 kcal mol(-1) of energy were generated by the recombination of CD3 and CHFCl radicals in a room-temperature bath gas. The four competing unimolecular decomposition reactions, namely, 1,1-HCl and 1,2-DCl elimination and 1,1-HF and 1,2-DF elimination, were observed, and the individual rate constants were measured. The product branching fractions are 0.60, 0.27, 0.09, and 0.04 for 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF elimination, respectively. Electronic structure calculations were used to define models of the four transition states. The statistical rate constants calculated from these models were compared to the experimental rate constants. The assigned threshold energies with ±2 kcal mol(-1) uncertainty are 60, 72, 65, and 74 kcal mol(-1) for the 1,2-DCl, 1,1-HCl, 1,2-DF, and 1,1-HF reactions, respectively. The loose structure of the 1,1-HX transition states, which is exemplified by the order of magnitude larger pre-exponential factor relative to the 1,2-HX elimination reactions, compensates for the high threshold energy; thus, the 1,1-HX elimination reaction rates can compete with the 1,2-HX elimination reactions for high levels of vibrational excitation in CD3CHFCl. The 1,1-HCl and 1,1-HF reactions are observed via the CD2═CDF and CD2═CDCl products formed from isomerization of the CD3CF and CD3CCl carbenes. These D-atom migration reactions are discussed, and the possibility of tunneling is evaluated. The transition states developed from the 1,1-HCl and 1,1-HF reactions of CD3CHFCl are compared to models for the HCl and HF elimination reactions of CHF2Cl, CHFCl2, and CH2FCl.