Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bert Wouters is active.

Publication


Featured researches published by Bert Wouters.


Journal of Chromatography A | 2011

High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns

Sebastiaan Eeltink; Bert Wouters; Gert Desmet; Mario Ursem; David Blinco; Glenwyn Kemp; Achim Treumann

The separation of intact proteins, including protein isoforms arising from various amino-acid modifications, employing a poly(styrene-co-divinylbenzene) monolithic capillary column in high-performance liquid chromatography coupled on-line to a time-of-flight mass spectrometer (MS) is described. Using a 250 mm × 0.2 mm monolithic capillary column high-sensitivity separations yielding peak capacities of >600 were achieved with a 2h linear gradient and formic acid added in the mobile phase as ion-pairing agent. The combination of high-resolution chromatography with high-accuracy MS allowed to distinguish protein isoforms that differ only in their oxidation and biotinylation state allowing the separation between structural isoforms. Finally, the potential to separate proteins isoforms due to glycosylation is discussed.


Journal of Chromatography A | 2010

Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns

Frederik Detobel; Ken Broeckhoven; Joke Wellens; Bert Wouters; Remco Swart; Mario Ursem; Gert Desmet; Sebastiaan Eeltink

An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 degrees C a small C-term effect was observed in a flow rate range of 1-4 microL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 microm porous silica particles while operating at a flow rate of 2 microL/min. The peak capacity per unit time of the 50mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame.


Journal of Separation Science | 2015

Design of a microfluidic device for comprehensive spatial two‐dimensional liquid chromatography

Bert Wouters; Jelle De Vos; Gert Desmet; H. Terryn; Peter J. Schoenmakers; Sebastiaan Eeltink

This study discusses the design aspects for the construction of a microfluidic device for comprehensive spatial two-dimensional liquid chromatography. In spatial two-dimensional liquid chromatography each peak is characterized by its coordinates in the plane. After completing the first-dimension separation all fractions are analyzed in parallel second-dimension separations. Hence, spatial two-dimensional liquid chromatography potentially provides much higher peak-production rates than a coupled column multi-dimensional liquid chromatography approach in which the second-dimension analyses are performed sequentially. A chip for spatial two-dimensional liquid chromatography has been manufactured from cyclic olefin copolymer and features a first-dimension separation channel and 21 parallel second-dimension separation channels oriented perpendicularly to the former. Compartmentalization of first- and second-dimension developments by physical barriers allowed for a preferential flow path with a minimal dispersion into the second-dimension separation channels. To generate a homogenous flow across all the parallel second-dimension channels, a radially interconnected flow distributor containing two zones of diamond-shaped pillars was integrated on-chip. A methacrylate ester based monolithic stationary phase with optimized macroporous structure was created in situ in the confines of the microfluidic chip. In addition, the use of a photomask was explored to localize monolith formation in the parallel second-dimension channels. Finally, to connect the spatial chip to the liquid chromatography instrument, connector ports were integrated allowing the use of Viper fittings. As an alternative, a chip holder with adjustable clasp locks was designed that allows the clamping force to be adjusted.


Analytical Chemistry | 2012

Capillary ion chromatography at high pressure and temperature.

Bert Wouters; Cees Bruggink; Gert Desmet; Yury Agroskin; Christopher A. Pohl; Sebastiaan Eeltink

The application of high pressure and temperature in ion chromatography (IC) can significantly improve the efficiency and reduce the analysis time. In this work, the kinetic-performance limits of capillary IC columns with inner diameters of 400 μm packed with 4 and 7 μm macroporous anion-exchange particles were investigated employing a capillary ion-exchange instrument allowing column pressures up to 34 MPa and column temperatures up to 80 °C. Plate heights below 10 μm could be realized using capillary columns packed with 4 μm particles. Compared to conventional IC using 7 μm particles and pressures up to 21 MPa, a 40% improvement in plate number could be achieved when working at the kinetic performance limits at 34 MPa and using columns packed with 4 μm particles. Using coupled columns with a total length of 400 mm, a mixture of seven anions was separated within 7.5 min while yielding 20,000 plates. Increasing the temperature improved the performance limits when operating in the C-term region (for fast IC separation using columns <75 cm). Temperature also affected the retention properties and hence the selectivity. At higher temperature, retention for monovalent ions was mainly governed by ion diameter. An increase in retention with temperature was observed for small ions, and there was a decrease for ions having a larger diameter. The retention factor for divalent and trivalent anions increased with temperature.


Journal of Chromatography A | 2014

Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography

Sam Wouters; Bert Wouters; Sander Jespers; Gert Desmet; Hamed Eghbali; Cees Bruggink; Sebastiaan Eeltink

A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture.


Journal of Separation Science | 2014

Monitoring the morphology development of polymer-monolithic stationary phases by thermal analysis

Sam Wouters; Bert Wouters; Axel Vaast; H. Terryn; Guy Van Assche; Sebastiaan Eeltink

Thermal analysis and SEM were employed to gain insights in the different stages of morphology development and the thermal properties of polymer-monolithic stationary phases. The studied system was a thermally initiated free-radical copolymerization reaction at 70°C of styrene and divinylbenzene in the presence of tetrahydrofuran and 1-decanol. The key events in the early stages of morphology development are initiation, chain growth, branching, and cyclization, leading to microgel particles. Interparticle reactions through pendant vinyl groups lead to the formation of microgel clusters. The rapid increase in molecular weight and cross-link density of the microgel clusters causes a reaction-induced phase separation, and the formation of a macroscopic network of interconnected globules was observed (macrogelation) at around 45 min. After 3 h or 65% conversion, a space-filling macroporous monolithic network was observed. Afterwards, mainly growth of existing globules takes place, reducing the macropore size. The porogen ratio affects the timing of the reaction-induced phase separation, strongly influencing the morphology of the polymer material. The use of a mixture of divinylbenzene isomers yielded a monolithic material that is less cross-linked at the surface compared to the central part of the polymer backbone due to copolymerization-composition drift. The less cross-linked outer layer starts devitrifying at 100°C.


Journal of Chromatography A | 2017

A cyclic-olefin-copolymer microfluidic immobilized-enzyme reactor for rapid digestion of proteins from dried blood spots

Bert Wouters; Irena Dapic; Thalassa S.E. Valkenburg; Sam Wouters; Leon Niezen; Sebastiaan Eeltink; Garry L. Corthals; Peter J. Schoenmakers

A critical step in the bottom-up characterization of proteomes is the conversion of proteins to peptides, by means of endoprotease digestion. Nowadays this method typically uses overnight digestion and as such represents a considerable bottleneck for high-throughput analysis. This report describes protein digestion using an immobilized-enzyme reactor (IMER), which enables accelerated digestion times that are completed within seconds to minutes. For rapid digestion to occur, a cyclic-olefin-copolymer microfluidic reactor was constructed containing trypsin immobilized on a polymer monolithic material through a 2-vinyl-4,4-dimethylazlactone linker. The IMER was applied for the rapid offline digestion of both singular protein standards and a complex protein mixture prior to liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The effects of protein concentration and residence time in the IMER were assessed for protein standards of varying molecular weight between 11 and 240kDa. Compared to traditional in-solution digestion, IMER-facilitated protein digestion at room temperature for 5min yielded similar results in terms of sequence coverage and number of identified peptides. Good repeatability was demonstrated with a relative standard deviation of 6% for protein-sequence coverage. The potential of the IMER was also demonstrated for a complex protein mixture in the analysis of dried blood spots. Compared to a traditional workflow a similar number of proteins could be identified, while reducing the total analysis time from 22.5h to 4h and importantly omitting the sample-pre-treatment steps (denaturation, reduction, and alkylation). The identified proteins from two workflows showed similar distributions in terms of molecular weight and hydrophobic character.


Journal of Chromatography A | 2014

Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

Bert Wouters; Ken Broeckhoven; Sam Wouters; Cees Bruggink; Yury Agroskin; Christopher A. Pohl; Sebastiaan Eeltink

The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion.


Journal of Chromatography A | 2013

Visualization procedures for proteins and peptides on flat-bed monoliths and their effects on matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection

Bert Wouters; Dominique J.D. Vanhoutte; Petra Aarnoutse; Adriaan Visser; Catherine Stassen; Bart Devreese; Wim Th. Kok; Peter J. Schoenmakers; Sebastiaan Eeltink

The present study concerns the application of visualization methods, i.e. coomassie-brilliant-blue-R staining (CBB-R), silver-nitrate staining, and fluorescamine labeling, and subsequent MALDI-MS analysis of intact proteins and peptides on the surface of flat-bed monoliths, intended for spatial two-dimensional chromatographic separations. The use of 100-μm thick macroporous poly(butyl methacrylate-co-ethylene dimethacrylate) flat-bed monoliths renders a fixation step obsolete, so that CBB-R and silver-nitrate staining and destaining could be achieved in 10-15 min as opposed to up to 24h, as is typical on 2D-PAGE gels. The detection limits remained comparable. The compatibility of the monolithic layer with subsequent MALDI-MS analysis of individual proteins and peptide spots was investigated with regards to mass accuracy, mass precision, resolution, and signal intensity. When comparing results from MALDI-MS analysis of proteins and peptides on a flat-bed monolith to results obtained directly on stainless-steel target plates, significant losses in mass precision, signal intensity, and an increased variation in resolution were observed. In addition, a loss in signal intensity up to two orders of magnitude was observed when using monolithic layers. After CCB-R and silver-nitrate staining and destaining to disrupt the protein-dye complexes no MALDI spectra with significant S/N ratios could be achieved. After fluorescamine labeling heterogeneous signals were observed, which resulted from a distribution in the number of fluorescence-labeled lysine groups and from the presence of labeled derivatives that had undergone condensation reactions.


Analytical Chemistry | 2017

Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation

Bob W.J. Pirok; Noor Abdulhussain; Tom Aalbers; Bert Wouters; R Peters; Peter J. Schoenmakers

Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min.

Collaboration


Dive into the Bert Wouters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert Desmet

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Sam Wouters

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Terryn

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jelle De Vos

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ken Broeckhoven

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Cees Bruggink

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge