Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berta Casar is active.

Publication


Featured researches published by Berta Casar.


Journal of Cell Biology | 2008

Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope

José M. González; Ana Navarro-Puche; Berta Casar; Piero Crespo; Vicente Andrés

Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C.


Molecular Cell | 2008

Essential Role of ERK Dimers in the Activation of Cytoplasmic but Not Nuclear Substrates by ERK-Scaffold Complexes

Berta Casar; Adán Pinto; Piero Crespo

Signals transmitted by ERK MAP kinases regulate the functions of multiple substrates present in the nucleus and in the cytoplasm. ERK signals are optimized by scaffold proteins that modulate their intensity and spatial fidelity. Once phosphorylated, ERKs dimerize, but how dimerization impacts on the activation of the different pools of substrates and whether it affects scaffolds functions as spatial regulators are unknown aspects of ERK signaling. Here we demonstrate that scaffolds and ERK dimers are essential for the activation of cytoplasmic but not nuclear substrates. Dimerization is critical for connecting the scaffolded ERK complex to cognate cytoplasmic substrates. Contrarily, nuclear substrates associate to ERK monomers. Furthermore, we show that preventing ERK dimerization is sufficient for attenuating cellular proliferation, transformation, and tumor development. Our results disclose a functional relationship between scaffold proteins and ERK dimers and identify dimerization as a key determinant of the spatial specificity of ERK signals.


Molecular and Cellular Biology | 2009

Ras Subcellular Localization Defines Extracellular Signal-Regulated Kinase 1 and 2 Substrate Specificity through Distinct Utilization of Scaffold Proteins

Berta Casar; Imanol Arozarena; Victoria Sanz-Moreno; Adán Pinto; Lorena Agudo-Ibáñez; Richard Marais; Robert E. Lewis; Maria T. Berciano; Piero Crespo

ABSTRACT Subcellular localization influences the nature of Ras/extracellular signal-regulated kinase (ERK) signals by unknown mechanisms. Herein, we demonstrate that the microenvironment from which Ras signals emanate determines which substrates will be preferentially phosphorylated by the activated ERK1/2. We show that the phosphorylation of epidermal growth factor receptor (EGFr) and cytosolic phospholipase A2 (cPLA2) is most prominent when ERK1/2 are activated from lipid rafts, whereas RSK1 is mainly activated by Ras signals from the disordered membrane. We present evidence indicating that the underlying mechanism of this substrate selectivity is governed by the participation of different scaffold proteins that distinctively couple ERK1/2, activated at defined microlocalizations, to specific substrates. As such, we show that for cPLA2 activation, ERK1/2 activated at lipid rafts interact with KSR1, whereas ERK1/2 activated at the endoplasmic reticulum utilize Sef-1. To phosphorylate the EGFr, ERK1/2 activated at lipid rafts require the participation of IQGAP1. Furthermore, we demonstrate that scaffold usage markedly influences the biological outcome of Ras site-specific signals. These results disclose an unprecedented spatial regulation of ERK1/2 substrate specificity, dictated by the microlocalization from which Ras signals originate and by the selection of specific scaffold proteins.


Journal of Cell Biology | 2010

ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes

Javier Vía Rodríguez; Fernando Calvo; José Manuel Rodríguez González; Berta Casar; Vicente Andrés; Piero Crespo

As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.


Molecular and Cellular Biology | 2003

p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels.

Victoria Sanz-Moreno; Berta Casar; Piero Crespo

ABSTRACT Mxi2 is a p38α splice isoform that is distinctively activated by mitogenic stimuli. Here we show that Mxi2 immunoprecipitates carry a kinase activity that is persistently activated by epidermal growth factor in a fashion regulated by Ras, Raf, and MEK. We demonstrate that this kinase activity can be attributed not to Mxi2 but rather to extracellular signal-regulated kinases 1 and 2 (ERK1/2), which coimmunoprecipitated with Mxi2 both by ectopic expression and in a physiological environment like the kidney. Furthermore, we provide evidence that Mxi2-ERK interaction has profound effects on ERK function, demonstrating that Mxi2 prolongs the duration of the ERK signal by sustaining its phosphorylation levels. Interestingly, we show that the effects of Mxi2 on ERK are restricted to nuclear events. Mxi2 potently up-regulates ERK-mediated activation of the transcription factors Elk1 and HIF1α but has no effect on the activity of ERK cytoplasmic substrates RSK2 and cPLA2, induced by epidermal growth factor or by MEK. Overall, our findings point to Mxi2 as a unique member of the p38 family that may have an unprecedented role in the regulation of the functions of ERK mitogen-activated protein kinases.


Cancer Cell | 2015

Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes

Ana M. Herrero; Adán Pinto; Paula Colón-Bolea; Berta Casar; Mary Jones; Lorena Agudo-Ibáñez; Rebeca Vidal; Stephan P. Tenbaum; Paolo Nuciforo; Elsa M. Valdizán; Zoltán Horváth; Laszlo Orfi; Antonio Pineda-Lucena; Emilie Bony; György Kéri; Germán Rivas; Angel Pazos; Rafael Gozalbes; Héctor G. Pálmer; Adam Hurlstone; Piero Crespo

Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.


The EMBO Journal | 2007

Mxi2 promotes stimulus-independent ERK nuclear translocation

Berta Casar; Victoria Sanz-Moreno; Mustafa N. Yazicioglu; Javier Vía Rodríguez; Maria T. Berciano; Miguel Lafarga; Melanie H. Cobb; Piero Crespo

Spatial regulation of ERK1/2 MAP kinases is an essential yet largely unveiled mechanism for ensuring the fidelity and specificity of their signals. Mxi2 is a p38α isoform with the ability to bind ERK1/2. Herein we show that Mxi2 has profound effects on ERK1/2 nucleocytoplasmic distribution, promoting their accumulation in the nucleus. Downregulation of endogenous Mxi2 by RNAi causes a marked reduction of ERK1/2 in the nucleus, accompanied by a pronounced decline in cellular proliferation. We demonstrate that Mxi2 functions in nuclear shuttling of ERK1/2 by enhancing the nuclear accumulation of both phosphorylated and unphosphorylated forms in the absence of stimulation. This process requires the direct interaction of both proteins and a high‐affinity binding of Mxi2 to ERK‐binding sites in nucleoporins, In this respect, Mxi2 acts antagonistically to PEA15, displacing it from ERK1/2 complexes. These results point to Mxi2 as a key spatial regulator for ERK1/2 and disclose an unprecedented stimulus‐independent mechanism for ERK nuclear import.


Cell Cycle | 2009

ERK dimers and scaffold proteins: unexpected partners for a forgotten (cytoplasmic) task.

Berta Casar; Adán Pinto; Piero Crespo

Signals transmitted by ERK1/2 MAP Kinases regulate the functions of multiple substrates present in the nucleus and in the cytoplasm, in similar proportions. In spite of this fact, the prevailing trend of the field has been to focus on the nuclear component, being considered the main executor of ERK biological functions. Following this fashion, scaffold proteins have been often described as modulators of ERK phosphorylation in their route, either as monomers or as dimers, to their ultimate destination at the nucleus. Contrarily, recent findings demonstrate that scaffolds and ERK dimers are essential for the activation of cytoplasmic but not nuclear substrates. Dimerization is critical for connecting the scaffolded ERK complex to cognate cytoplasmic substrates, while nuclear substrates are activated by ERK monomers. Furthermore, blocking ERK cytoplasmic signals by preventing ERK dimerization, is sufficient for attenuating cellular proliferation, transformation and tumor development. These new results highlight the importance of ERK cytoplasmic signals, disclose an unprecedented functional relationship between scaffold proteins and ERK dimers and identify dimerization as a key determinant of the spatial specificity of ERK signals.


Biochemical Journal | 2012

Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases

Berta Casar; Javier Rodríguez; Gilad Gibor; Rony Seger; Piero Crespo

ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.


Molecular Biology of the Cell | 2016

Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

Ana M. Herrero; Berta Casar; Paula Colón-Bolea; Lorena Agudo-Ibáñez; Piero Crespo

RAS-ERK signals integrate time and space in order to elicit a biological response. Both proliferative and differentiating signals emanate exclusively from disordered membranes. Proliferative signals can be transformed into differentiating signals by prolonging ERK activation if HRAS is at a disordered membrane.

Collaboration


Dive into the Berta Casar's collaboration.

Top Co-Authors

Avatar

Piero Crespo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Adán Pinto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Colón-Bolea

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana M. Herrero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicente Andrés

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Adam Hurlstone

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge