Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berta Sanchez-Laorden is active.

Publication


Featured researches published by Berta Sanchez-Laorden.


Cancer Discovery | 2013

Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma

Maria Romina Girotti; Malin Pedersen; Berta Sanchez-Laorden; Amaya Viros; Samra Turajlic; Dan Niculescu-Duvaz; Alfonso Zambon; John Sinclair; Andrew Hayes; Martin Gore; Paul Lorigan; Caroline J. Springer; James Larkin; Claus Jørgensen; Richard Marais

UNLABELLED We generated cell lines resistant to BRAF inhibitors and show that the EGF receptor (EGFR)-SRC family kinase (SFK)-STAT3 signaling pathway was upregulated in these cells. In addition to driving proliferation of resistant cells, this pathway also stimulated invasion and metastasis. EGFR inhibitors cooperated with BRAF inhibitors to block the growth of the resistant cells in vitro and in vivo, and monotherapy with the broad specificity tyrosine kinase inhibitor dasatinib blocked growth and metastasis in vivo. We analyzed tumors from patients with intrinsic or acquired resistance to vemurafenib and observed increased EGFR and SFK activity. Furthermore, dasatinib blocked the growth and metastasis of one of the resistant tumors in immunocompromised mice. Our data show that BRAF inhibitor-mediated activation of EGFR-SFK-STAT3 signaling can mediate resistance in patients with BRAF-mutant melanoma. We describe 2 treatments that seem to overcome this resistance and could deliver therapeutic efficacy in patients with drug-resistant BRAF-mutant melanoma. SIGNIFICANCE Therapies that target the driver oncogenes in cancer can achieve remarkable responses if patients are stratified for treatment. However, as with conventional therapies, patients often develop acquired resistance to targeted therapies, and a proportion of patients are intrinsically resistant and fail to respond despite the presence of an appropriate driver oncogene mutation. We found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients.


Cancer Cell | 2015

Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma

Maria Romina Girotti; Filipa Lopes; Natasha Preece; Dan Niculescu-Duvaz; Alfonso Zambon; Lawrence Davies; Steven Whittaker; Grazia Saturno; Amaya Viros; Malin Pedersen; Bart M. J. M. Suijkerbuijk; Delphine Menard; Robert McLeary; Louise Johnson; Laura Fish; Sarah Ejiama; Berta Sanchez-Laorden; Juliane Hohloch; Neil O. Carragher; Kenneth G MacLeod; Garry Ashton; Anna A. Marusiak; Alberto Fusi; John Brognard; Margaret C. Frame; Paul Lorigan; Richard Marais; Caroline J. Springer

Summary BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF inhibitors (CCT196969, CCT241161) that also inhibit SFKs. These compounds do not drive paradoxical pathway activation and inhibit MEK/ERK in BRAF and NRAS mutant melanoma. They inhibit melanoma cells and patient-derived xenografts that are resistant to BRAF and BRAF/MEK inhibitors. Thus, paradox-breaking pan-RAF inhibitors that also inhibit SFKs could provide first-line treatment for BRAF and NRAS mutant melanomas and second-line treatment for patients who develop resistance.


Nature | 2014

Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

Amaya Viros; Berta Sanchez-Laorden; Malin Pedersen; Simon J. Furney; Joel Rae; Kate Hogan; Sarah Ejiama; Maria Romina Girotti; Martin G. Cook; Nathalie Dhomen; Richard Marais

Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.


Science Signaling | 2014

BRAF Inhibitors Induce Metastasis in RAS Mutant or Inhibitor-Resistant Melanoma Cells By Reactivating MEK and ERK Signaling

Berta Sanchez-Laorden; Amaya Viros; Maria Romina Girotti; Malin Pedersen; Grazia Saturno; Alfonso Zambon; Dan Niculescu-Duvaz; Samra Turajlic; Andrew Hayes; Martin Gore; James Larkin; Paul Lorigan; Martin G. Cook; Caroline J. Springer; Richard Marais

When therapy leads to cancer metastasis, knowing where else to target in the pathway may be the key to successful treatment. Blocking Melanoma Metastasis Although inhibitors of the mutant BRAF kinase are effective in some melanoma patients, intrinsic or acquired resistance to the drug is common. Furthermore, the growth of melanoma tumors with concomitant mutations in guanosine triphosphatase RAS, which activated kinases in the RAF family, is paradoxically accelerated by BRAF inhibition. RAF is the first kinase in a three-kinase cascade [the RAF–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal–regulated kinase) pathway] that is involved in cell proliferation. Using proteomics, patient material, and mouse models, Sanchez-Laorden et al. found that BRAF inhibition paradoxically stimulated MEK and ERK signaling to induce metastasis of melanoma cells with mutant BRAF, resistance to a BRAF inhibitor, or mutant RAS. Combined treatment with a MEK inhibitor prevented BRAF inhibitor–induced metastasis in mice. Thus, combination therapies may be best to prevent both primary tumor growth and drug-induced metastasis. Melanoma is a highly metastatic and lethal form of skin cancer. The protein kinase BRAF is mutated in about 40% of melanomas, and BRAF inhibitors improve progression-free and overall survival in these patients. However, after a relatively short period of disease control, most patients develop resistance because of reactivation of the RAF–ERK (extracellular signal–regulated kinase) pathway, mediated in many cases by mutations in RAS. We found that BRAF inhibition induces invasion and metastasis in RAS mutant melanoma cells through a mechanism mediated by the reactivation of the MEK (mitogen-activated protein kinase kinase)–ERK pathway, increased expression and secretion of interleukin 8, and induction of protease-dependent invasion. These events were accompanied by a cell morphology switch from predominantly rounded to predominantly elongated cells. We also observed similar responses in BRAF inhibitor–resistant melanoma cells. These data show that BRAF inhibitors can induce melanoma cell invasion and metastasis in tumors that develop resistance to these drugs.


Cancer Discovery | 2014

The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα.

Berta Sanchez-Laorden; Kate O'Brien; Holly Brunton; Jennifer Ferguson; Helen S. Young; Nathalie Dhomen; Keith T. Flaherty; Dennie T. Frederick; Zachary A. Cooper; Jennifer A. Wargo; Richard Marais; Claudia Wellbrock

UNLABELLED Recently, the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune microenvironment can act as a source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma growth factor that provides resistance to MAPK pathway inhibitors through the lineage transcription factor MITF (microphthalmia transcription factor). Most strikingly, in BRAF-mutant melanomas of patients and BRAF(V600E) melanoma allografts, MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα signaling with IκB kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells but also the microenvironment. In summary, we identify the immune microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. SIGNIFICANCE This study identifies the immune microenvironment as a source of resistance to MAPK pathway inhibitors through macrophage-derived TNFα, and reveals that in patients on treatment this source becomes reinforced. Inhibiting IκB kinase enhances the efficacy of MAPK pathway inhibitors, which identifies this approach as a potential novel strategy to improve targeted therapy in melanoma.


Nature Communications | 2014

Diverse matrix metalloproteinase functions regulate cancer amoeboid migration

Jose L. Orgaz; Pahini Pandya; Rimple Dalmeida; Panagiotis Karagiannis; Berta Sanchez-Laorden; Amaya Viros; Jean Albrengues; Frank O. Nestle; Anne J. Ridley; Cedric Gaggioli; Richard Marais; Sophia N. Karagiannis; Victoria Sanz-Moreno

Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion.


Cancer Discovery | 2013

Primary Melanoma of the CNS in Children Is Driven by Congenital Expression of Oncogenic NRAS in Melanocytes

Malin Pedersen; Heidi V. N. Küsters-Vandevelde; Amaya Viros; Patricia J. T. A. Groenen; Berta Sanchez-Laorden; Jacobus H. Gilhuis; Ilse A. van Engen van Grunsven; Willy Renier; Jolanda Schieving; Ion Niculescu-Duvaz; Caroline J. Springer; Benno Küsters; Pieter Wesseling; W.A.M. Blokx; Richard Marais

UNLABELLED NRAS mutations are common in human melanoma. To produce a mouse model of NRAS-driven melanoma, we expressed oncogenic NRAS (NRAS(G12D)) in mouse melanocytes. When NRAS(G12D) was expressed in the melanocytes of developing embryos, it induced melanocyte proliferation and congenital melanocytic lesions reminiscent of human blue nevi but did not induce cutaneous melanoma. Unexpectedly, however, it did induce early-onset primary melanoma of the central nervous system (CNS). The tumors were rapidly proliferating and caused neurologic symptoms, rapid health deterioration, and death. NRAS is not a common driver oncogene of primary melanoma of the CNS in adults, but we report two cases of primary melanoma of the CNS in children, both of which carried oncogenic mutations in NRAS. We conclude that acquisition of somatic mutations in NRAS in CNS melanocytes is a predisposing risk factor for primary melanoma of the CNS in children, and we present a mouse model of this disease. SIGNIFICANCE We show that the acquisition of NRAS mutations in melanocytes during embryogenesis is a risk factor for early-onset melanoma of the CNS. We have developed a powerful mouse model to study this rare but devastating childhood disease, and to develop therapeutic approaches for its treatment.


Cancer Cell | 2013

Mind the IQGAP.

Berta Sanchez-Laorden; Amaya Viros; Richard Marais

The scaffold protein IQGAP1 regulates cell signaling through the RAF/MEK/ERK pathway. Recent data show that cancer cells in which the RAF/MEK/ERK pathway is activated are particularly sensitive to the disruption of IQGAP1 function. IQGAP drugs may be particularly effective in tumors that develop resistance to existing pathway drugs.


Journal of Investigative Dermatology | 2013

Topical 5-Fluorouracil Elicits Regressions of BRAF Inhibitor–Induced Cutaneous Squamous Cell Carcinoma

Amaya Viros; Robert Hayward; Matthew Martin; Sharona Yashar; Clarissa C. Yu; Berta Sanchez-Laorden; Alfonso Zambon; Dan Niculescu-Duvaz; Caroline J. Springer; Roger S. Lo; Richard Marais

Correction to: Journal of Investigative Dermatology (2013) 133, 274–276; doi:10.1038/jid.2012.268; published online 16 August 2012


Nature | 2015

Corrigendum: Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53.

Amaya Viros; Berta Sanchez-Laorden; Malin Pedersen; Simon J. Furney; Joel Rae; Kate Hogan; Sarah Ejiama; Maria Romina Girotti; Martin G. Cook; Nathalie Dhomen; Richard Marais

This corrects the article DOI: 10.1038/nature13298

Collaboration


Dive into the Berta Sanchez-Laorden's collaboration.

Top Co-Authors

Avatar

Richard Marais

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Amaya Viros

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Malin Pedersen

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Caroline J. Springer

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfonso Zambon

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Dan Niculescu-Duvaz

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Lorigan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Grazia Saturno

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Martin G. Cook

Royal Surrey County Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge