Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berta Strulovici is active.

Publication


Featured researches published by Berta Strulovici.


Cell Host & Microbe | 2008

Genome-scale RNAi screen for host factors required for HIV replication.

Honglin Zhou; Min Xu; Qian Huang; Adam T. Gates; Xiaohua Douglas Zhang; John Castle; Erica Stec; Marc Ferrer; Berta Strulovici; Daria J. Hazuda; Amy S. Espeseth

Human immunodeficiency virus (HIV)-1 depends on the host cell machinery to support its replication. To discover cellular factors associated with HIV-1 replication, we conducted a genome-scale siRNA screen, revealing more than 311 host factors, including 267 that were not previously linked to HIV. Surprisingly, there was little overlap between these genes and the HIV dependency factors described recently. However, an analysis of the genes identified in both screens revealed overlaps in several of the associated pathways or protein complexes, including the SP1/mediator complex and the NF-kappaB signaling pathway. cDNAs for a subset of the identified genes were used to rescue HIV replication following knockdown of the cellular mRNA providing strong evidence that the following six genes are previously uncharacterized host factors for HIV: AKT1, PRKAA1, CD97, NEIL3, BMP2K, and SERPINB6. This study highlights both the power and shortcomings of large scale loss-of-function screens in discovering host-pathogen interactions.


Molecular and Cellular Biology | 2006

Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions.

Steven R. Bartz; Zhan Zhang; Julja Burchard; Maki Imakura; Melissa Martin; Anthony Palmieri; Rachel Needham; Jie Guo; Marcia Gordon; Namjin Chung; Paul Warrener; Aimee L. Jackson; Michael Carleton; Melissa Oatley; Louis Locco; Francesca Santini; Todd Smith; Priya Kunapuli; Marc Ferrer; Berta Strulovici; Stephen H. Friend; Peter S. Linsley

ABSTRACT RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drugs mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53+/− matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity ∼4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.


Journal of Biomolecular Screening | 2008

Median Absolute Deviation to Improve Hit Selection for Genome-Scale RNAi Screens

Namjin Chung; Xiaohua Douglas Zhang; Anthony Kreamer; Louis Locco; Pei Fen Kuan; Steven R. Bartz; Peter S. Linsley; Marc Ferrer; Berta Strulovici

High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task. The use of robust methods based on median and median absolute deviation (MAD) has been suggested to improve hit selection in such cases, but mean and standard deviation (SD)—based methods are still predominantly used in many RNAi HTS. In an experimental approach to compare these 2 methods, a genome-scale small interfering RNA (siRNA) screen was performed, in which the identification of novel targets increasing the therapeutic index of the chemotherapeutic agent mitomycin C (MMC) was sought. MAD values were resistant to the presence of outliers, and the hits selected by the MAD-based method included all the hits that would be selected by SD-based method as well as a significant number of additional hits. When retested in triplicate, a similar percentage of these siRNAs were shown to genuinely sensitize cells to MMC compared with the hits shared between SD- and MAD-based methods. Confirmed hits were enriched with the genes involved in the DNA damage response and cell cycle regulation, validating the overall hit selection strategy. Finally, computer simulations showed the superiority and generality of the MAD-based method in various RNAi HTS data models. In conclusion, the authors demonstrate that the MAD-based hit selection method rescued physiologically relevant false negatives that would have been missed in the SD-based method, and they believe it to be the desirable 1st-choice hit selection method for RNAi screen results. ( Journal of Biomolecular Screening 2008:149-158)


Proceedings of the National Academy of Sciences of the United States of America | 2006

LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease

John Majercak; William J. Ray; Amy S. Espeseth; Adam J. Simon; Xiao-Ping Shi; Carrie Wolffe; Krista Getty; Shane Marine; Erica Stec; Marc Ferrer; Berta Strulovici; Steven R. Bartz; Adam T. Gates; Min Xu; Qian Huang; Lei Ma; Paul J. Shughrue; Julja Burchard; Dennis Colussi; Beth Pietrak; Jason A. Kahana; Dirk Beher; Thomas W. Rosahl; Mark S. Shearman; Daria J. Hazuda; Alan B. Sachs; Kenneth S. Koblan; Guy R. Seabrook; David J. Stone

Rare familial forms of Alzheimers disease (AD) are thought to be caused by elevated proteolytic production of the Aβ42 peptide from the β-amyloid-precursor protein (APP). Although the pathogenesis of the more common late-onset AD (LOAD) is not understood, BACE1, the protease that cleaves APP to generate the N terminus of Aβ42, is more active in patients with LOAD, suggesting that increased amyloid production processing might also contribute to the sporadic disease. Using high-throughput siRNA screening technology, we assessed 15,200 genes for their role in Aβ42 secretion and identified leucine-rich repeat transmembrane 3 (LRRTM3) as a neuronal gene that promotes APP processing by BACE1. siRNAs targeting LRRTM3 inhibit the secretion of Aβ40, Aβ42, and sAPPβ, the N-terminal APP fragment produced by BACE1 cleavage, from cultured cells and primary neurons by up to 60%, whereas overexpression increases Aβ secretion. LRRTM3 is expressed nearly exclusively in the nervous system, including regions affected during AD, such as the dentate gyrus. Furthermore, LRRTM3 maps to a region of chromosome 10 linked to both LOAD and elevated plasma Aβ42, and is structurally similar to a family of neuronal receptors that includes the NOGO receptor, an inhibitor of neuronal regeneration and APP processing. Thus, LRRTM3 is a functional and positional candidate gene for AD, and, given its receptor-like structure and restricted expression, a potential therapeutic target.


Analytical Biochemistry | 2003

Development of an intact cell reporter gene β-lactamase assay for G protein-coupled receptors for high-throughput screening

Priya Kunapuli; Richard W. Ransom; Kathy L. Murphy; Doug Pettibone; Julie Kerby; Sarah Grimwood; Paul Zuck; Peter Hodder; Raul Lacson; Ira Hoffman; James Inglese; Berta Strulovici

G protein-coupled receptors (GPCRs) are involved in a large variety of physiological disorders, and are thus important pharmaceutical drug targets. Here, we describe the development and characterization of a beta-lactamase reporter gene assay as a functional readout for the ligand-induced activation of the human bradykinin B1 receptor, expressed recombinantly in CHO cells. The beta-lactamase reporter gene assay provides high sensitivity due to the absence of endogenous beta-lactamase activity in mammalian cells. The cell-permeable fluorogenic substrate allows single-cell cloning of cells expressing functional BK1 receptors. Pharmacological characterization reveals comparable sensitivity and potency of known BK1 receptor agonists and antagonists between the beta-lactamase assay, competition-binding assay, and other direct measurements of second messengers. The beta-lactamase assay has been optimized for cell density, time of agonist stimulation, and DMSO sensitivity. This CHO-hBK1-beta-lactamase assay is well suited to automation and miniaturization required for high-throughput screening.


Journal of Biomolecular Screening | 2007

The Use of Strictly Standardized Mean Difference for Hit Selection in Primary RNA Interference High-Throughput Screening Experiments

Xiaohua Douglas Zhang; Marc Ferrer; Amy S. Espeseth; Shane Marine; Erica Stec; Michael A. Crackower; Daniel J. Holder; Joseph F. Heyse; Berta Strulovici

RNA interference (RNAi) high-throughput screening (HTS) has been hailed as the 2nd genomics wave following the 1st genomics wave of gene expression microarrays and single-nucleotide polymorphism discovery platforms. Following an RNAi HTS, the authors are interested in identifying short interfering RNA (siRNA) hits with large inhibition/activation effects. For hit selection, the z-score method and its variants are commonly used in primary RNAi HTS experiments. Recently, strictly standardized mean difference (SSMD) has been proposed to measure the siRNA effect represented by the magnitude of difference between an siRNA and a negative reference group. The links between SSMD and d +-probability offer a clear interpretation of siRNA effects from a probability perspective. Hence, SSMD can be used as a ranking metric for hit selection. In this article, the authors investigated both the SSMD-based testing process and the use of SSMD as a ranking metric for hit selection in 2 primary siRNA HTS experiments. The analysis results showed that, as a ranking metric, SSMD was more stable and reliable than percentage inhibition and led to more robust hit selection results. Using the SSMD -based testing method, the false-negative rate can more readily be obtained. More important, the use of the SSMD-based method can result in a reduction in both the false-negative and false-positive rates. The applications presented in this article demonstrate that the SSMD method addresses scientific questions and fills scientific needs better than both percentage inhibition and the commonly used z-score method for hit selection. (Journal of Biomolecular Screening 2007:497-509)


Journal of Biomolecular Screening | 2004

Miniaturization of intracellular calcium functional assays to 1536-well plate format using a fluorometric imaging plate reader.

Peter Hodder; Rebecca Mull; Jason Cassaday; Kurtis Berry; Berta Strulovici

The measurement of intracellular calcium response transients in living mammalian cells is a popular functional assay for identification of agonists and antagonists to receptors or channels of pharmacological interest. In recent years, advances in fluorescence-based detection techniques and automation technologies have facilitated the adaptation of this assay to 384-well microplate format high-throughput screening (HTS) assays. However, the cost and time required performing the intracellular calcium HTS assays in the 384-well format can be prohibitive for HTS campaigns of greater than 1 × 106 wells. For these reasons, it is attractive to miniaturize intracellular calcium functional assays to the 1536-well microplate format, where assay volumes and plate throughput can be decreased by several fold. The focus of the research described in this article is the miniaturization of an intracellular calcium assay to 1536-well plate format. This was accomplished by modifying the hardware and software of a fluorometric imaging plate reader (FLIPR) to enable transfer of nanoliters of test compound directly to a 1536-well assay plate, and measure the resulting calcium response from all 1536 wells simultaneously. An intracellular calcium functional assay against the rat muscarinic acetylcholine receptor subtype 1 (rmAchR1) G-protein coupled receptor (GPCR) was miniaturized and executed on this modified instrument. In experiments measuring the activity of known muscarinic receptor agonists and antagonists, the miniaturized FLIPR assay gave EC50 and IC50 values and rank order potency comparable to the 384-well format assays. Calculated Z′ factors for the miniaturized agonist and antagonist assays were, respectively, 0.56 ± 0.21 and 0.53 ± 0.22, which were slightly higher (Z′agonist = 0.55 ± 0.33) and lower (Z′antagonist = 0.70 ± 0.18) than the corresponding values in the 384-well assays. A mock agonist HTS campaign against the muscarinic receptor in miniaturized format was able to identify all wells spiked with the rmAchR1 agonist carbachol.


Journal of Biomolecular Screening | 2006

A Cell-Based Ultra-High-Throughput Screening Assay for Identifying Inhibitors of D-Amino Acid Oxidase:

Philip E. Brandish; Chi-Sung Chiu; Jonathan Schneeweis; Nicholas J. Brandon; Clare Leech; Oleg Kornienko; Edward M. Scolnick; Berta Strulovici; Wei Zheng

Enzymes are often considered less “druggable” targets than ligand-regulated proteins such as G-protein-coupled receptors, ion channels, or other hormone receptors. Reasons for this include cellular location (intracellular vs. cell surface), typically lower affinities for the binding of small molecules compared to ligand-specific receptors, and binding (catalytic) sites that are often charged or highly polar. A practical drawback to the discovery of compounds targeting enzymes is that screening of compound libraries is typically carried out in cell-free activity assays using purified protein in an inherently artificial environment. Cell-based assays, although often arduous to design for enzyme targets, are the preferred discovery tool for the screening of large compound libraries. The authors have recently described a novel cell-based approach to screening for inhibitors of a phosphatase enzyme and now report on the development and implementation of a homogeneous 3456-well plate assay for D-amino acid oxidase (DAO). Human DAO was stably expressed in Chinese hamster ovary (CHO) cells, and its activity was measured as the amount of hydrogen peroxide detected in the growth medium following feeding the cells with D-serine. In less than 12 weeks, the authors proved the concept in 96-and then 384-well formats, miniaturized the assay to the 3456-well (nanoplate) scale, and screened a library containing more than 1 million compounds. They have identified several cell-permeable inhibitors of DAO from this cell-based high-throughput screening, which provided the discovery program with a few novel and attractive lead structures.


Assay and Drug Development Technologies | 2003

A Fully Automated [35S]GTPγS Scintillation Proximity Assay for the High-Throughput Screening of Gi-Linked G Protein-Coupled Receptors

Marc Ferrer; Garrett Kolodin; Paul Zuck; Richard Peltier; Kurtis Berry; Suzanne M. Mandala; Hugh Rosen; Hisashi Ota; Satoshi Ozaki; James Inglese; Berta Strulovici

The diversity of physiological functions mediated by the GPCR superfamily provides a rich source of molecular targets for drug discovery programs. Consequently, a variety of assays have been designed to identify lead molecules based on ligand binding or receptor function. In one of these, the binding of [(35)S]GTPgammaS, a nonhydrolyzable analogue of GTP, to receptor-activated G-protein alpha subunits represents a unique functional assay for GPCRs and is well suited for use with automated HTS. Here we compare [(35)S]GTPgammaS scintillation proximity binding assays for two different G(i)-coupled GPCRs, and describe their implementation with automated high-throughput systems.


Analytical Biochemistry | 2003

Identification of metabotropic glutamate receptor antagonists using an automated high-throughput screening system

Peter Hodder; Jason Cassaday; Richard Peltier; Kurtis Berry; James Inglese; Bradley P. Feuston; Chris Culberson; Leo Bleicher; Nicholas D. P. Cosford; Chris Bayly; Carla Suto; Mark A. Varney; Berta Strulovici

Antagonists to the human metabotropic glutamate receptor subtype 5a(mGluR(5a)) have been implicated as potential therapeutics for the treatment of a variety of nervous system disorders, including pain, anxiety, and Parkinsons disease. To discover novel antagonists to the mGluR(5a), a functional assay measuring agonist-induced intracellular calcium release was developed. The assay was used for the high-throughput screening of a large collection of compounds in single wells using a fully automated robotic platform. Primary high-throughput screening hits were subjected to a combination of data analysis and counterscreening assays to identify several compounds with both efficacy and selectivity for the metabotropic glutamate receptor target.

Collaboration


Dive into the Berta Strulovici's collaboration.

Top Co-Authors

Avatar

Marc Ferrer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James Inglese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wei Zheng

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge