Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand Guenet is active.

Publication


Featured researches published by Bertrand Guenet.


Ecology | 2010

Priming effect: bridging the gap between terrestrial and aquatic ecology

Bertrand Guenet; Michael Danger; Luc Abbadie; Gérard Lacroix

Understanding how ecosystems store or release carbon is one of ecologys greatest challenges in the 21st century. Organic matter covers a large range of chemical structures and qualities, and it is classically represented by pools of different recalcitrance to degradation. The interaction effects of these pools on carbon cycling are still poorly understood and are most often ignored in global-change models. Soil scientists have shown that inputs of labile organic matter frequently tend to increase, and often double, the mineralization of the more recalcitrant organic matter. The recent revival of interest for this phenomenon, named the priming effect, did not cross the frontiers of the disciplines. In particular, the priming effect phenomenon has been almost totally ignored by the scientific communities studying marine and continental aquatic ecosystems. Here we gather several arguments, experimental results, and field observations that strongly support the hypothesis that the priming effect is a general phenomenon that occurs in various terrestrial, freshwater, and marine ecosystems. For example, the increase in recalcitrant organic matter mineralization rate in the presence of labile organic matter ranged from 10% to 500% in six studies on organic matter degradation in aquatid ecosystems. Consequently, the recalcitrant organic matter mineralization rate may largely depend on labile organic matter availability, influencing the CO2 emissions of both aquatic and terrestrial ecosystems. We suggest that (1) recalcitrant organic matter may largely contribute to the CO2 emissions of aquatic ecosystems through the priming effect, and (2) priming effect intensity may be modified by global changes, interacting with eutrophication processes and atmospheric CO2 increases. Finally, we argue that the priming effect acts substantially in the carbon and nutrient cycles in all ecosystems. We outline exciting avenues for research, which could provide new insights on the responses of ecosystems to anthropogenic perturbations and their feedbacks to climatic changes.


Global Biogeochemical Cycles | 2016

Toward more realistic projections of soil carbon dynamics by Earth system models

Yiqi Luo; Anders Ahlström; Steven D. Allison; N.H. Batjes; Victor Brovkin; Nuno Carvalhais; Adrian Chappell; Philippe Ciais; Eric A. Davidson; Adien Finzi; Katerina Georgiou; Bertrand Guenet; Oleksandra Hararuk; Jennifer W. Harden; Yujie He; Francesca M. Hopkins; Lifen Jiang; C. Koven; Robert B. Jackson; Chris D. Jones; Mark J. Lara; J. K. Liang; A. David McGuire; William J. Parton; Changhui Peng; James T. Randerson; Alejandro Salazar; Carlos A. Sierra; Matthew J. Smith; Hanqin Tian

Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.


Hydrobiologia | 2014

Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect

Bertrand Guenet; Michael Danger; Loïc Harrault; Béatrice Allard; Marta Jauset-Alcala; Gérard Bardoux; Danielle Benest; Luc Abbadie; Gérard Lacroix

In the context of global change, eroded soil carbon fate and its impact on aquatic ecosystems CO2 emissions are subject to intense debates. In particular, soil carbon mineralization could be enhanced by its interaction with autochthonous carbon, a process called priming effect, but experimental evidences of this process are scarce. We measured in a microcosm experiment simulating oligo-mesotrophic and eutrophic aquatic conditions how quickly soil organic matter (SOM) sampled in diverse ecosystems was mineralized as compared to mineralization within soil horizons. For both nutrient loads, 13C-glucose was added to half of the microcosms to simulate exudation of labile organic matter (LOM) by phytoplankton. Effects of LOM on soil mineralization were estimated using the difference in δ13C between the SOM and the glucose. After 45xa0days of incubation, the mean SOM mineralization was 63% greater in the aquatic context, the most important CO2 fluxes arising during the first days of incubation. Nutrients had no significant effect on SOM mineralization and glucose addition increased by 12% the mean SOM mineralization, evidencing the occurrence of a priming effect.


Global Biogeochemical Cycles | 2014

Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type

Marta Camino-Serrano; Bert Gielen; Sebastiaan Luyssaert; Philippe Ciais; Sara Vicca; Bertrand Guenet; Bruno De Vos; Nathalie Cools; Bernhard Ahrens; M. Altaf Arain; Werner Borken; Nicholas Clarke; Beverly Clarkson; Thomas Cummins; Axel Don; Elisabeth Graf Pannatier; Hjalmar Laudon; Tim R. Moore; Tiina M. Nieminen; Mats Nilsson; Matthias Peichl; Luitgard Schwendenmann; Jan Siemens; Ivan A. Janssens

Lateral transport of carbon plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. There is, however, a lack of information on the factors controlling one of the main C sources of this lateral flux, i.e., the concentration of dissolved organic carbon (DOC) in soil solution across large spatial scales and under different soil, vegetation, and climate conditions. We compiled a database on DOC in soil solution down to 80u2009cm and analyzed it with the aim, first, to quantify the differences in DOC concentrations among terrestrial ecosystems, climate zones, soil, and vegetation types at global scale and second, to identify potential determinants of the site-to-site variability of DOC concentration in soil solution across European broadleaved and coniferous forests. We found that DOC concentrations were 75% lower in mineral than in organic soil, and temperate sites showed higher DOC concentrations than boreal and tropical sites. The majority of the variation (R2u2009=u20090.67–0.99) in DOC concentrations in mineral European forest soils correlates with NH4+, C/N, Al, and Fe as the most important predictors. Overall, our results show that the magnitude (23% lower in broadleaved than in coniferous forests) and the controlling factors of DOC in soil solution differ between forest types, with site productivity being more important in broadleaved forests and water balance in coniferous stands.


Agronomy for Sustainable Development | 2017

Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review

Marie-France Dignac; Delphine Derrien; Pierre Barré; Sébastien Barot; Lauric Cécillon; Claire Chenu; Tiphaine Chevallier; Grégoire T. Freschet; Patricia Garnier; Bertrand Guenet; Mickaël Hedde; Katja Klumpp; Gwenaëlle Lashermes; Pierre-Alain Maron; Naoise Nunan; Catherine Roumet; Isabelle Basile-Doelsch

The international 4 per 1000 initiative aims at supporting states and non-governmental stakeholders in their efforts towards a better management of soil carbon (C) stocks. These stocks depend on soil C inputs and outputs. They are the result of fine spatial scale interconnected mechanisms, which stabilise/destabilise organic matter-borne C. Since 2016, the CarboSMS consortium federates French researchers working on these mechanisms and their effects on C stocks in a local and global change setting (land use, agricultural practices, climatic and soil conditions, etc.). This article is a synthesis of this consortium’s first seminar. In the first part, we present recent advances in the understanding of soil C stabilisation mechanisms comprising biotic and abiotic processes, which occur concomitantly and interact. Soil organic C stocks are altered by biotic activities of plants (the main source of C through litter and root systems), microorganisms (fungi and bacteria) and ‘ecosystem engineers’ (earthworms, termites, ants). In the meantime, abiotic processes related to the soil-physical structure, porosity and mineral fraction also modify these stocks. In the second part, we show how agricultural practices affect soil C stocks. By acting on both biotic and abiotic mechanisms, land use and management practices (choice of plant species and density, plant residue exports, amendments, fertilisation, tillage, etc.) drive soil spatiotemporal organic inputs and organic matter sensitivity to mineralisation. Interaction between the different mechanisms and their effects on C stocks are revealed by meta-analyses and long-term field studies. The third part addresses upscaling issues. This is a cause for major concern since soil organic C stabilisation mechanisms are most often studied at fine spatial scales (mm–μm) under controlled conditions, while agricultural practices are implemented at the plot scale. We discuss some proxies and models describing specific mechanisms and their action in different soil and climatic contexts and show how they should be taken into account in large scale models, to improve change predictions in soil C stocks. Finally, this literature review highlights some future research prospects geared towards preserving or even increasing C stocks, our focus being put on the mechanisms, the effects of agricultural practices on them and C stock prediction models.


Global Change Biology | 2017

Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100

Rong Wang; Daniel S. Goll; Y. Balkanski; D. A. Hauglustaine; Olivier Boucher; Philippe Ciais; Ivan A. Janssens; Josep Peñuelas; Bertrand Guenet; Jordi Sardans; Laurent Bopp; Nicolas Vuichard; Feng Zhou; Bengang Li; Shilong Piao; Shushi Peng; Ye Huang; Shu Tao

Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed inxa0situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (∆Cν dep ), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ∆Cν dep for 1997-2013 was estimated to be 0.27xa0±xa00.13xa0Pgxa0Cxa0year-1 from N and 0.054xa0±xa00.10xa0Pgxa0Cxa0year-1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ∆Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ∆CPdep was exceeded by ∆CNdep over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.


Global Change Biology | 2017

Phosphorus in agricultural soils: drivers of its distribution at the global scale

Bruno Ringeval; Laurent Augusto; Hervé Monod; Dirk van Apeldoorn; Lex Bouwman; David L. Achat; L P Chini; Kristof Van Oost; Bertrand Guenet; Rong Wang; Bertrand Decharme; Thomas Nesme; Sylvain Pellerin

Abstract Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB. When the spatial variability was computed between grid cells at half‐degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale. &NA; Numerous processes drive the global spatial distribution of phosphorus (P) in agricultural soils, but their relative roles remain unclear. Thanks to a modelling approach, we found that almost all of the global spatial variability in total soil P in cropland soils (PTOT) could be explained by the distribution of the soil biogeochemical background (that determines the P content of soils at the conversion to agriculture, BIOG), while both BIOG and farming practices (FARM) explained the spatial variability in inorganic labile P (PILAB) (˜40% and ˜60%, respectively). Figure. No caption available.


Scientific Reports | 2016

Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests

Hui Wei; Xiaomei Chen; Guoliang Xiao; Bertrand Guenet; Sara Vicca; Weijun Shen

Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (Pu2009<u20090.05). Temperature was the primary factor influencing the seasonal variability of Rh while moisture was not in these humid subtropical forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (Pu2009=u20090.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations.


Scientific Reports | 2015

Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests

Hui Wei; Guoliang Xiao; Bertrand Guenet; Ivan A. Janssens; Weijun Shen

To explore the importance of soil microbial community composition on explaining the difference in heterotrophic soil respiration (Rh) across forests, a field investigation was conducted on Rh and soil physiochemical and microbial properties in four subtropical forests in southern China. We observed that Rh differed significantly among forests, being 2.48 ± 0.23, 2.31 ± 0.21, 1.83 ± 0.08 and 1.56 ± 0.15u2005μmol m−2 s−1 in the climax evergreen broadleaf forest (BF), the mixed conifer and broadleaf forest (CF), the conifer plantation (CP), and the native broadleaved species plantation (BP), respectively. Both linear mixed effect model and variance decomposition analysis indicated that soil microbial community composition derived from phospholipid fatty acids (PLFAs) was not the first-order explanatory variable for the Rh variance across the forests, with the explanatory power being 15.7%. Contrastingly, vegetational attributes such as root biomass (22.6%) and soil substrate availability (18.6%) were more important for explaining the observed Rh variance. Our results therefore suggest that vegetation attributes and soil carbon pool size, rather than soil microbial community composition, should be preferentially considered to understand the spatial Rh variance across the subtropical forests in southern China.


Global Change Biology | 2017

Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment

Martin G. De Kauwe; Belinda E. Medlyn; Anthony P. Walker; Sönke Zaehle; Shinichi Asao; Bertrand Guenet; Anna B. Harper; Thomas Hickler; Atul K. Jain; Yiqi Luo; Xingjie Lu; Kristina A. Luus; William J. Parton; Shijie Shu; Ying Ping Wang; Christian Werner; Jianyang Xia; Elise Pendall; Jack A. Morgan; Edmund Ryan; Yolima Carrillo; Feike A. Dijkstra; Tamara J. Zelikova; Richard J. Norby

Abstract Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single‐factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above‐ground net primary productivity (range: 31–390 g C m−2 yr−1). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single‐factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2‐induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single‐factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.

Collaboration


Dive into the Bertrand Guenet's collaboration.

Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Chenu

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Guimberteau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep Peñuelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ronny Lauerwald

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge