Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand J. Jean-Claude is active.

Publication


Featured researches published by Bertrand J. Jean-Claude.


European Journal of Medicinal Chemistry | 2011

Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium(II) complexes

Hizbullah Khan; Amin Badshah; Ghulam Murtaz; Muhammad Said; Zia-ur Rehman; Christine Neuhausen; Margarita Todorova; Bertrand J. Jean-Claude; Ian S. Butler

Six mixed ligand dithiocarbamate Pd(II) complexes (1-6) of general formula [(DT)Pd(PR(3))Cl], where DT = dimethyldithiocarbamate (1, 5), diethyldithiocarbamate (2, 3), dicyclohexyldithiocarbamate (4), bis(2-methoxyethyl)dithiocarbamate (6); PR(3) = benzyldiphenylphosphine (1), diphenyl-2-methoxyphenylphosphine (2), diphenyl-p-tolylphosphine (3), diphenyl-m-tolylphosphine (4), tricyclohexylphosphine (5), diphenyl-2-pyridylphosphine (6) have been synthesized and characterised using Elemental analysis, FT-IR, Raman and multinuclear magnetic resonance (NMR) spectroscopy. Compounds 1 and 2 were also characterized by single crystal X-ray diffraction technique (XRD). The XRD study reveals that the Pd(II) moiety has a pseudo square-planar geometry, in which two positions are occupied by the dithiocarbamate ligand in a bidentate fashion, while at the remaining two positions organophosphine and chloride are present. The anticancer activity of the synthesized metallodrugs was checked against DU145 human prostate carcinoma (HTB-81) cells, the IC(50) values indicate that the compounds are highly active against these cells. These Pd(II) complexes also show moderate antibacterial activity against gram positive and gram negative bacteria.


Journal of Pharmacology and Experimental Therapeutics | 2007

Chlorambucil Cytotoxicity in Malignant B Lymphocytes Is Synergistically Increased by 2-(Morpholin-4-yl)-benzo[h]chomen-4-one (NU7026)-Mediated Inhibition of DNA Double-Strand Break Repair via Inhibition of DNA-Dependent Protein Kinase

Lilian Amrein; Martin Loignon; Anne-Christine Goulet; Michael J. Dunn; Bertrand J. Jean-Claude; Raquel Aloyz; Lawrence C. Panasci

Chlorambucil (CLB) treatment is used in chronic lymphocytic leukemia (CLL) but resistance to CLB develops in association with accelerated repair of CLB-induced DNA damage. Phosphorylated histone H2AX (γH2AX) is located at DNA double-strand break (DSB) sites; furthermore, it recruits and retains damage-responsive proteins. This damage can be repaired by nonhomologous DNA end-joining (NHEJ) and/or homologous recombinational repair (HR) pathways. A key component of NHEJ is the DNA-dependent protein kinase (DNA-PK) complex. Increased DNA-PK activity is associated with resistance to CLB in CLL. We used the specific DNA-PK inhibitor 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026) to sensitize CLL cells to chlorambucil. Our results indicate that in a CLL cell line (I83) and in primary CLL-lymphocytes, chlorambucil plus NU7026 has synergistic cytotoxic activity at nontoxic doses of NU7026. CLB treatment results in G2/M phase arrest, and NU7026 increases this CLB-induced G2/M arrest. Moreover, a kinetic time course demonstrates that CLB-induced DNA-PK activity was inhibited by NU7026, providing direct evidence of the ability of NU7026 to inhibit DNA-PK function. DSBs, visualized as γH2AX, were enhanced 24 to 48 h after CLB and further increased by CLB plus NU7026, suggesting that the synergy of the combination is mediated by NU7026 inhibition of DNA-PK with subsequent inhibition of DSB repair.


Biochemical Pharmacology | 1996

Sensitization to doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate

Lawrence C. Panasci; Bertrand J. Jean-Claude; Daniela Vosilescu; Amir Mustafa; Sorin Damian; Zoe Damian; Elias Georges; Zhi Liu; Gerald Batist; Brian Leyland-Jones

Acquired drug resistance is a major factor in the failure of doxorubicin-based chemotherapy in breast cancer. We determined the ability of megestrol acetate and/or tamoxifen to reverse doxorubicin drug resistance in a doxorubicin-resistant breast cancer line (the human MCF-7/ADR). The cytotoxicity of doxorubicin, megestrol acetate, and/or tamoxifen was determined in the sensitive and resistant cell lines utilizing the sulphorhodamine B assay. Tamoxifen alone produced an IC50 (concentration resulting in 50% inhibition of control growth) of 10.6 microM, whereas megestrol acetate alone resulted in an IC50 of 48.7 microM in the MCF-7/ADR cell line. The IC50 of doxorubicin in MCF-7/ADR was 1.9 microM. Neither megestrol acetate alone nor tamoxifen alone at 1 or 5 microM altered the IC50 of doxorubicin. However, the combination of tamoxifen (1 or 5 microM) and megestrol acetate (1 or 5 microM) synergistically sensitized MCF-7/ADR cells. Additionally, megestrol acetate and tamoxifen inhibited iodoarylazidoprazosin binding to P-glycoprotein, and, in their presence, there was an increased doxorubicin accumulation in the MCF-7/ADR cells. Furthermore, the combination of tamoxifen and megestrol acetate had much less effect on the cytotoxicity of doxorubicin in MCF-7 wild-type cells. Clinically achievable concentrations of tamoxifen and megestrol acetate can largely sensitize MCF-7/ADR to doxorubicin. The combination of these three drugs in a clinical trial may be informative.


International Journal of Cancer | 2004

Multiple mechanisms of action of ZR2002 in human breast cancer cells: A novel combi‐molecule designed to block signaling mediated by the ERB family of oncogenes and to damage genomic DNA

Fouad Brahimi; Zakaria Rachid; Qiyu Qiu; James P. McNamee; Yu-Jiang Li; Ana M. Tari; Bertrand J. Jean-Claude

The mechanism of action of ZR2002, a chimeric amino quinazoline designed to possess mixed EGFR tyrosine kinase (TK) inhibitory and DNA targeting properties, was compared to those of ZR01, a reversible inhibitor of the same class and PD168393, a known irreversible inhibitor of EGFR. ZR2002 exhibited 4‐fold stronger EGFR TK inhibitory activity than its structural homologue ZR01 but was approximately 3‐fold less active than the 6‐acrylamidoquinazoline PD168393. It preferentially blocked EGF and TGFα‐induced cell growth over PDGF and serum. It also inhibited signal transduction in heregulin‐stimulated breast tumour cells, indicating that it does not only block EGFR but also its closely related erbB2 gene product. In contrast to its structural homologues, ZR2002 was capable of inducing significant levels of DNA strand breaks in MDA‐MB‐468 cells after a short 2 hr drug exposure at a concentration as low as 10 μM. Reversibility studies using whole cell autophosphorylation and growth assays in human breast cell lines showed that in contrast to its reversible inhibitor counterpart ZR01, ZR2002 induced irreversible inhibition of EGF‐stimulated autophosphorylation in MDA‐MB‐468 cells and irreversible inhibition of cell growth. Moreover despite possessing a weaker binding affinity than PD168393, it induced a significantly more sustained antiproliferative effect than the latter after a pulse 2 hr exposure. More importantly, in contrast to ZR01 and PD168393, ZR2002 was capable of inducing significant levels of cell death by apoptosis in MDA‐MB‐468 cells. The results in toto suggest that the superior antiproliferative potency of ZR2002 may be due to its ability to induce a protracted blockade of receptor tyrosine kinase‐mediated signaling while damaging cellular DNA, a combination of events that may trigger cell‐killing by apoptosis.


Bioorganic & Medicinal Chemistry Letters | 2009

Design and synthesis of new stabilized combi-triazenes for targeting solid tumors expressing the epidermal growth factor receptor (EGFR) or its closest homologue HER2.

Zakaria Rachid; Meaghan MacPhee; Christopher I. Williams; Margarita Todorova; Bertrand J. Jean-Claude

The monoalkyltriazene moiety lends itself well to the design of combi-molecules. However, due to its instability under physiological conditions, efforts were directed towards stabilizing it by grafting a hydrolysable carbamate onto the 3-position. The synthesis and biological activities of these novel N-carbamyl triazenes are described.


Clinical Cancer Research | 2007

The Combi-Targeting Concept: In vitro and In vivo Fragmentation of a Stable Combi-Nitrosourea Engineered to Interact with the Epidermal Growth Factor Receptor while Remaining DNA Reactive

Qiyu Qiu; Juozas Domarkas; Ranjita Banerjee; Nuria Merayo; Fouad Brahimi; James P. McNamee; Bernard F. Gibbs; Bertrand J. Jean-Claude

Purpose: JDA58 (NSC 741282), a “combi-molecule” optimized in the context of the “combi-targeting concept,” is a nitrosourea moiety tethered to an anilinoquinazoline. Here, we sought to show its binary epidermal growth factor receptor (EGFR)/DNA targeting property and to study its fragmentation in vitro and in vivo. Experimental Design: The fragmentation of JDA58 was detected in cells in vitro and in vivo by fluorescence microscopy and tandem mass spectrometry. EGFR phosphorylation and DNA damage were determined by Western blotting and comet assay, respectively. Tumor data were examined for statistical significance using the Students t test. Results: JDA58 inhibited EGFR tyrosine kinase (IC50, 0.2 μmol/L) and blocked EGFR phosphorylation in human DU145 prostate cancer cells. It induced significant levels of DNA damage in DU145 cells in vitro or in vivo and showed potent antiproliferative activity both in vitro and in a DU145 xenograft model. In cell-free medium, JDA58 was hydrolyzed to JDA35, a fluorescent amine that could be observed in tumor cells both in vitro and in vivo. In tumor cells in vitro or in vivo, or in plasma collected from mice, the denitrosated species JDA41 was the predominant metabolite. However, mass spectrometric analysis revealed detectable levels of the hydrolytic product JDA35 in tumor cells both in vitro and in vivo. Conclusions: The results in toto suggest that growth inhibition in vitro and in vivo may be sustained by the intact combi-molecule plus JDA35 plus JDA41, three inhibitors of EGFR, and the concomitantly released DNA-damaging species. This leads to a model wherein a single molecule carries a complex multitargeted-multidrug combination.


Bioorganic & Medicinal Chemistry Letters | 2003

Synthesis of pyrimidinopyridine-triazene conjugates targeted to abl tyrosine kinase.

Zakaria Rachid; Athanasia Katsoulas; Fouad Brahimi; Bertrand J. Jean-Claude

The synthesis and abl tyrosine kinase inhibitory activities of alkyltriazenes conjugated to phenylaminopyrimidines are described. Significant abl inhibitory activities were observed only when a benzamido spacer was inserted between the 1,2,3-triazene chain and the 2-phenyaminopyridopyrimidine moiety.


Bioinorganic Chemistry and Applications | 2010

Antineoplastic Activity of New Transition Metal Complexes of 6-Methylpyridine-2-carbaldehyde-N(4)-ethylthiosemicarbazone: X-Ray Crystal Structures of [VO(2)(mpETSC)] and [Pt(mpETSC)Cl].

Shadia A. Elsayed; Ahmed M. El-Hendawy; Sahar I. Mostafa; Bertrand J. Jean-Claude; Margarita Todorova; Ian S. Butler

New complexes of dioxovanadium(V), zinc(II), ruthenium(II), palladium(II), and platinum(II) with 6-methylpyridine-2-carbaldehyde-N(4)-ethylthiosemicarbazone (HmpETSC) have been synthesized. The composition of these complexes is discussed on the basis of elemental analyses, IR, Raman, NMR (1H, 13C, and 31P), and electronic spectral data. The X-ray crystal structures of [VO2(mpETSC)] and [Pt(mpETSC)Cl] are also reported. The HmpETSC and its [Zn(HmpETSC)Cl2] and [Pd(mpETSC)Cl] complexes exhibit antineoplastic activity against colon cancer human cell lines (HCT 116).


British Journal of Cancer | 2004

Sustained antiproliferative mechanisms by RB24, a targeted precursor of multiple inhibitors of epidermal growth factor receptor and a DNA alkylating agent in the A431 epidermal carcinoma of the vulva cell line

R Banerjee; Z Rachid; Q Qiu; J P McNamee; A M Tari; Bertrand J. Jean-Claude

Recently, with the purpose of enhancing the potency of epidermal growth factor receptor (EGFR)-based therapies, we designed a novel strategy termed ‘Cascade-release targeting’ that seeks to develop molecules capable of degrading to multiple tyrosine kinase (TK) inhibitors and highly reactive electrophiles, in a stepwise fashion. Here we report on the first prototype of this model, RB24, a masked methyltriazene, that in addition to being an inhibitor on its own was designed to degrade to RB14, ZR08, RB10+a DNA alkylating methyldiazonium species. The cascade degradation of RB24 requires the generation of two reactive electrophiles: (a) an iminium ion and (b) a methyldiazonium ion. Thus, we surmise that these species could alkylate the active site of EGFR, thereby irreversibly blocking its action and that DNA damage could be induced by the methyldiazonium. Using the EGFR-overexpressing human epidermoid carcinoma of the vulva cell line, A431, we demonstrate herein that (a) RB24 and its derived species (e.g. RB14, ZR08) irreversibly inhibit EGFR autophosphorylation, (b) RB24 induced significant levels of DNA strand breaks, (c) sustained inhibition of EGFR by RB24 was associated with blockade of MAPK activation and c-fos gene expression, (d) RB24 induced irreversible cell growth inhibition with a 100-fold greater potency than Temodal™, a clinical methyltriazene. The pronounced growth inhibitory potency of RB24 was attributed to its ability to simultaneously damage DNA and irreversibly block EGFR TK activity.


Molecular Cancer Therapeutics | 2008

Combi-targeting concept: an optimized single-molecule dual-targeting model for the treatment of chronic myelogenous leukemia

Athanasia Katsoulas; Zakaria Rachid; James P. McNamee; Christopher Williams; Bertrand J. Jean-Claude

Blockade of Bcr-Abl by the inhibitor Imatinib has proven efficacious in the therapy of chronic myelogenous leukemia (CML). However resistance to the drug emerges at the advanced phases of the disease. Therefore, novel therapy models remained to be designed. We have developed a novel dual targeted agent termed “combi-molecule” designed to not only block Bcr-Abl but also damage DNA. ZRF1, the first optimized prototype of the approach, was “programmed” to degrade into another inhibitor ZRF0 plus a methyl diazonium species. It was ∼2-fold stronger Abl tyrosine kinase inhibitor than Imatinib and a more potent DNA-damaging agent than Temodal. In the p53 wild-type Mo7p210 cells, the potency of ZRF1 was ∼1,000-fold superior to that of the equieffective combinations of Imatinib plus Temodal. More importantly, its superior potency over Imatinib was more pronounced in Bcr-Abl-positive cells coexpressing wild-type p53. Studies to rationalize these results showed that, through its Bcr-Abl inhibitory function, it down-regulated p53. However, sufficient level of the latter protein was available for transactivating p21 and Bax, which are required for cell cycle arrest and apoptosis. The results suggest that, in p53 wild-type cells, apoptosis is induced not only through Bcr-Abl inhibition but also through the p53-controlled DNA-damaging pathway, leading to an additive effect that translates into enhanced cell death. The study conclusively showed that p53 is a major determinant for the cytotoxic advantages of the novel combi-molecular approach in CML, a disease in which 70% to 85% of all the cases express wild-type p53. [Mol Cancer Ther 2008;7(5):1033–43]

Collaboration


Dive into the Bertrand J. Jean-Claude's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge