Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand M. Hochwald is active.

Publication


Featured researches published by Bertrand M. Hochwald.


IEEE Transactions on Information Theory | 2003

How much training is needed in multiple-antenna wireless links?

Babak Hassibi; Bertrand M. Hochwald

Multiple-antenna wireless communication links promise very high data rates with low error probabilities, especially when the wireless channel response is known at the receiver. In practice, knowledge of the channel is often obtained by sending known training symbols to the receiver. We show how training affects the capacity of a fading channel-too little training and the channel is improperly learned, too much training and there is no time left for data transmission before the channel changes. We compute a lower bound on the capacity of a channel that is learned by training, and maximize the bound as a function of the received signal-to-noise ratio (SNR), fading coherence time, and number of transmitter antennas. When the training and data powers are allowed to vary, we show that the optimal number of training symbols is equal to the number of transmit antennas-this number is also the smallest training interval length that guarantees meaningful estimates of the channel matrix. When the training and data powers are instead required to be equal, the optimal number of symbols may be larger than the number of antennas. We show that training-based schemes can be optimal at high SNR, but suboptimal at low SNR.


IEEE Transactions on Information Theory | 2002

High-rate codes that are linear in space and time

Babak Hassibi; Bertrand M. Hochwald

Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits per second per hertz, Vertical Bell Labs Layered Space-Time (V-BLAST), where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas-this deficiency is especially important for modern cellular systems, where a base station typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information-theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs).


IEEE Transactions on Information Theory | 1999

Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading

Thomas L. Marzetta; Bertrand M. Hochwald

We analyze a mobile wireless link comprising M transmitter and N receiver antennas operating in a Rayleigh flat-fading environment. The propagation coefficients between pairs of transmitter and receiver antennas are statistically independent and unknown; they remain constant for a coherence interval of T symbol periods, after which they change to new independent values which they maintain for another T symbol periods, and so on. Computing the link capacity, associated with channel coding over multiple fading intervals, requires an optimization over the joint density of T/spl middot/M complex transmitted signals. We prove that there is no point in making the number of transmitter antennas greater than the length of the coherence interval: the capacity for M>T is equal to the capacity for M=T. Capacity is achieved when the T/spl times/M transmitted signal matrix is equal to the product of two statistically independent matrices: a T/spl times/T isotropically distributed unitary matrix times a certain T/spl times/M random matrix that is diagonal, real, and nonnegative. This result enables us to determine capacity for many interesting cases. We conclude that, for a fixed number of antennas, as the length of the coherence interval increases, the capacity approaches the capacity obtained as if the receiver knew the propagation coefficients.


IEEE Transactions on Information Theory | 2000

Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading

Bertrand M. Hochwald; Thomas L. Marzetta

Motivated by information-theoretic considerations, we propose a signaling scheme, unitary space-time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh fast-fading environments, since it does not require the receiver to know or learn the propagation coefficients. Unitary space-time modulation uses constellations of T/spl times/M space-time signals (/spl Phi//sub i/, l=1, ..., L), where T represents the coherence interval during which the fading is approximately constant, and M<T is the number of transmitter antennas. The columns of each /spl Phi//sub i/ are orthonormal. When the receiver does not know the propagation coefficients, which between pairs of transmitter and receiver antennas are modeled as statistically independent, this modulation performs very well either when the signal-to-noise ratio (SNR) is high or when T/spl Gt/M. We design some multiple-antenna signal constellations and simulate their effectiveness as measured by bit-error probability with maximum-likelihood decoding. We demonstrate that two antennas have a 6-dB diversity gain over one antenna at 15-dB SNR.


IEEE Transactions on Communications | 2000

Differential unitary space-time modulation

Bertrand M. Hochwald; Wim Sweldens

We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase-shift keying commonly used in single-antenna unknown-channel systems. We show how our differential framework links the unknown-channel system with a known-channel system, and we develop performance design criteria. As a special ease, we introduce a class of diagonal signals where only one antenna is active at any time, and demonstrate how these signals may be used to achieve full transmitter diversity and low probability of error.


IEEE Transactions on Information Theory | 2000

Systematic design of unitary space-time constellations

Bertrand M. Hochwald; Thomas L. Marzetta; Thomas Richardson; Wim Sweldens; Rüdiger L. Urbanke

We propose a systematic method for creating constellations of unitary space-time signals for multiple-antenna communication links. Unitary space-time signals, which are orthonormal in time across the antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the transmitter nor the receiver knows the fading coefficients. The signals can achieve low probability of error by exploiting multiple-antenna diversity. Because the fading coefficients are not known, the criterion for creating and evaluating the constellation is nonstandard and differs markedly from the familiar maximum-Euclidean-distance norm. Our construction begins with the first signal in the constellation-an oblong complex-valued matrix whose columns are orthonormal-and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space. This construction easily produces large constellations of high-dimensional signals. We demonstrate its efficacy through examples involving one, two, and three transmitter antennas.


IEEE Journal on Selected Areas in Communications | 2001

A transmitter diversity scheme for wideband CDMA systems based on space-time spreading

Bertrand M. Hochwald; Thomas L. Marzetta; Constantinos B. Papadias

We present a transmit diversity technique for the downlink of (wideband) direct-sequence (DS) code division multiple access (CDMA) systems. The technique, called space-time spreading (STS), improves the downlink performance by using a small number of antenna elements at the base and one or more antennas at the handset, in conjunction with a novel spreading scheme that is inspired by space-time codes. It spreads each signal in a balanced way over the transmitter antenna elements to provide maximal path diversity at the receiver. In doing so, no extra spreading codes, transmit power or channel information are required at the transmitter and only minimal extra hardware complexity at both sides of the link. Both our analysis and simulation results show significant performance gains over conventional single-antenna systems and other open-loop transmit diversity techniques. Our approach is a practical way to increase the bit rate and/or improve the quality and range in the downlink of either mobile or fixed CDMA systems. A STS-based proposal for the case of two transmitter and single-receiver antennas has been accepted and will be included as an optional diversity mode in release A of the IS-2000 wideband CDMA standard.


IEEE Transactions on Information Theory | 2001

Representation theory for high-rate multiple-antenna code design

Amin Shokrollahi; Babak Hassibi; Bertrand M. Hochwald; Wim Sweldens

Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a fading environment, but the practical success of using multiple antennas depends crucially on our ability to design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero determinant, is a desirable property for good performance. We use the powerful theory of fixed-point-free groups and their representations to design high-rate constellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a group, for all rates and numbers of transmitter antennas. The group structure makes the constellations especially suitable for differential modulation and low-complexity decoding algorithms. The classification also reveals that the number of different group structures with full diversity is very limited when the number of transmitter antennas is large and odd. We, therefore, also consider extensions of the constellation designs to nongroups. We conclude by showing that many of our designed constellations perform excellently on both simulated and real wireless channels.


IEEE Transactions on Signal Processing | 2006

Fast transfer of channel state information in wireless systems

Thomas L. Marzetta; Bertrand M. Hochwald

Knowledge of accurate and timely channel state information (CSI) at the transmitter is becoming increasingly important in wireless communication systems. While it is often assumed that the receiver (whether base station or mobile) needs to know the channel for accurate power control, scheduling, and data demodulation, it is now known that the transmitter (especially the base station) can also benefit greatly from this information. For example, recent results in multiantenna multiuser systems show that large throughput gains are possible when the base station uses multiple antennas and a known channel to transmit distinct messages simultaneously and selectively to many single-antenna users. In time-division duplex systems, where the base station and mobiles share the same frequency band for transmission, the base station can exploit reciprocity to obtain the forward channel from pilots received over the reverse channel. Frequency-division duplex systems are more difficult because the base station transmits and receives on different frequencies and therefore cannot use the received pilot to infer anything about the multiantenna transmit channel. Nevertheless, we show that the time occupied in frequency-duplex CSI transfer is generally less than one might expect and falls as the number of antennas increases. Thus, although the total amount of channel information increases with the number of antennas at the base station, the burden of learning this information at the base station paradoxically decreases. Thus, the advantages of having more antennas at the base station extend from having network gains to learning the channel information. We quantify our gains using linear analog modulation which avoids digitizing and coding the CSI and therefore can convey information very rapidly and can be readily analyzed. The old paradigm that it is not worth the effort to learn channel information at the transmitter should be revisited since the effort decreases and the gain increases with the number of antennas.


IEEE Transactions on Information Theory | 2002

Cayley differential unitary space-time codes

Babak Hassibi; Bertrand M. Hochwald

One method for communicating with multiple antennas is to encode the transmitted data differentially using unitary matrices at the transmitter, and to decode differentially without knowing the channel coefficients at the receiver. Since channel knowledge is not required at the receiver, differential schemes are ideal for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Although this basic principle is well understood, it is not known how to generate good-performing constellations of unitary matrices, for any number of transmit and receive antennas and for any rate. This is especially true at high rates where the constellations must be rapidly encoded and decoded. We propose a class of Cayley codes that works with any number of antennas, and has efficient encoding and decoding at any rate. The codes are named for their use of the Cayley transform, which maps the highly nonlinear Stiefel manifold of unitary matrices to the linear space of skew-Hermitian matrices. This transformation leads to a simple linear constellation structure in the Cayley transform domain and to an information-theoretic design criterion based on emulating a Cauchy random matrix. Moreover, the resulting Cayley codes allow polynomial-time near-maximum-likelihood (ML) decoding based on either successive nulling/canceling or sphere decoding. Simulations show that the Cayley codes allow efficient and effective high-rate data transmission in multiantenna communication systems without knowing the channel.

Collaboration


Dive into the Bertrand M. Hochwald's collaboration.

Top Co-Authors

Avatar

Babak Hassibi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arye Nehorai

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge