Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand Mollereau is active.

Publication


Featured researches published by Bertrand Mollereau.


Nature Reviews Neuroscience | 2014

Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases

Claudio Hetz; Bertrand Mollereau

The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.


Cell Death & Differentiation | 2011

Biological functions of p53 isoforms through evolution: lessons from animal and cellular models

Virginie Marcel; Marie-Laure Dichtel-Danjoy; Charlotte Sagne; Hind Hafsi; Dali Ma; Sandra Ortiz-Cuaran; Magali Olivier; Janet Hall; Bertrand Mollereau; Pierre Hainaut; Jean-Christophe Bourdon

The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of ‘p53 isoforms’, including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.


Autophagy | 2012

ER stress inhibits neuronal death by promoting autophagy

Antoine Fouillet; Clémence Levet; Angelique Virgone; Marion Robin; Pierre Dourlen; Jennifer Rieusset; Elise Belaidi; Michel Ovize; Monique Touret; Serge Nataf; Bertrand Mollereau

Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress (“preconditioning”) is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases.


PLOS Pathogens | 2009

Wolbachia Interferes with Ferritin Expression and Iron Metabolism in Insects

Natacha Kremer; Denis Voronin; Delphine Charif; Patrick Mavingui; Bertrand Mollereau; Fabrice Vavre

Wolbachia is an intracellular bacterium generally described as being a facultative reproductive parasite. However, Wolbachia is necessary for oogenesis completion in the wasp Asobara tabida. This dependence has evolved recently as a result of interference with apoptosis during oogenesis. Through comparative transcriptomics between symbiotic and aposymbiotic individuals, we observed a differential expression of ferritin, which forms a complex involved in iron storage. Iron is an essential element that is in limited supply in the cell. However, it is also a highly toxic precursor of Reactive Oxygen Species (ROS). Ferritin has also been shown to play a key role in host–pathogen interactions. Measuring ferritin by quantitative RT-PCR, we confirmed that ferritin was upregulated in aposymbiotic compared to symbiotic individuals. Manipulating the iron content in the diet, we showed that iron overload markedly affected wasp development and induced apoptotic processes during oogenesis in A. tabida, suggesting that the regulation of iron homeostasis may also be related to the obligate dependence of the wasp. Finally, we demonstrated that iron metabolism is influenced by the presence of Wolbachia not only in the obligate mutualism with A. tabida, but also in facultative parasitism involving Drosophila simulans and in Aedes aegypti cells. In these latter cases, the expression of Wolbachia bacterioferritin was also increased in the presence of iron, showing that Wolbachia responds to the concentration of iron. Our results indicate that Wolbachia may generally interfere with iron metabolism. The high affinity of Wolbachia for iron might be due to physiological requirement of the bacterium, but it could also be what allows the symbiont to persist in the organism by reducing the labile iron concentration, thus protecting the cell from oxidative stress and apoptosis. These findings also reinforce the idea that pathogenic, parasitic and mutualistic intracellular bacteria all use the same molecular mechanisms to survive and replicate within host cells. By impacting the general physiology of the host, the presence of a symbiont may select for host compensatory mechanisms, which extends the possible consequences of persistent endosymbiont on the evolution of their hosts.


Nature | 2001

Two-step process for photoreceptor formation in Drosophila.

Bertrand Mollereau; M.I. Domínguez; Rebecca Webel; Nansi Jo Colley; Benison Keung; Jose F. de Celis; Claude Desplan

The formation of photoreceptor cells (PRCs) in Drosophila serves as a paradigm for understanding neuronal determination and differentiation. During larval stages, a precise series of sequential inductive processes leads to the recruitment of eight distinct PRCs (R1–R8). But, final photoreceptor differentiation, including rhabdomere morphogenesis and opsin expression, is completed four days later, during pupal development. It is thought that photoreceptor cell fate is irreversibly established during larval development, when each photoreceptor expresses a particular set of transcriptional regulators and sends its projection to different layers of the optic lobes. Here, we show that the spalt (sal) gene complex encodes two transcription factors that are required late in pupation for photoreceptor differentiation. In the absence of the sal complex, rhabdomere morphology and expression of opsin genes in the inner PRCs R7 and R8 are changed to become identical to those of outer R1–R6 PRCs. However, these cells maintain their normal projections to the medulla part of the optic lobe, and not to the lamina where outer PRCs project. These data indicate that photoreceptor differentiation occurs as a two-step process. First, during larval development, the photoreceptor neurons become committed and send their axonal projections to their targets in the brain. Second, terminal differentiation is executed during pupal development and the photoreceptors adopt their final cellular properties.


The EMBO Journal | 2009

ER stress protects from retinal degeneration

César S. Mendes; Clémence Levet; Gilles Chatelain; Pierre Dourlen; Antoine Fouillet; Marie-Laure Dichtel-Danjoy; Alexis Gambis; Hyung Don Ryoo; Hermann Steller; Bertrand Mollereau

The unfolded protein response (UPR) is a specific cellular process that allows the cell to cope with the overload of unfolded/misfolded proteins in the endoplasmic reticulum (ER). ER stress is commonly associated with degenerative pathologies, but its role in disease progression is still a matter for debate. Here, we found that mutations in the ER‐resident chaperone, neither inactivation nor afterpotential A (NinaA), lead to mild ER stress, protecting photoreceptor neurons from various death stimuli in adult Drosophila. In addition, Drosophila S2 cultured cells, when pre‐exposed to mild ER stress, are protected from H2O2, cycloheximide‐ or ultraviolet‐induced cell death. We show that a specific ER‐mediated signal promotes antioxidant defences and inhibits caspase‐dependent cell death. We propose that an immediate consequence of the UPR not only limits the accumulation of misfolded proteins but also protects tissues from harmful exogenous stresses.


EMBO Reports | 2006

Cytochrome c-d regulates developmental apoptosis in the Drosophila retina.

César S. Mendes; Eli Arama; Samara Brown; Heather Scherr; Mayank Srivastava; Andreas Bergmann; Hermann Steller; Bertrand Mollereau

The role of cytochrome c (Cyt c) in caspase activation has largely been established from mammalian cell‐culture studies, but much remains to be learned about its physiological relevance in situ. The role of Cyt c in invertebrates has been subject to considerable controversy. The Drosophila genome contains distinct cyt c genes: cyt c‐p and cyt c‐d. Loss of cyt c‐p function causes embryonic lethality owing to a requirement of the gene for mitochondrial respiration. By contrast, cyt c‐d mutants are viable but male sterile. Here, we show that cyt c‐d regulates developmental apoptosis in the pupal eye. cyt c‐d mutant retinas show a profound delay in the apoptosis of superfluous interommatidial cells and perimeter ommatidial cells. Furthermore, there is no apoptosis in mutant retinal tissues for the Drosophila homologues of apoptotic protease‐activating factor 1 (Ark) and caspase 9 (Dronc). In addition, we found that cyt c‐d—as with ark and dronc—regulates scutellar bristle number, which is known to depend on caspase activity. Collectively, our results indicate a role of Cyt c in caspase regulation of Drosophila somatic cells.


Mechanisms of Development | 2000

A green fluorescent protein enhancer trap screen in Drosophila photoreceptor cells

Bertrand Mollereau; Mathias F. Wernet; Philippe Beaufils; Darrell J. Killian; Franck Pichaud; Ronald P. Kühnlein; Claude Desplan

The Drosophila ommatidia contain two classes of photoreceptor cells (PRs), the outer and the inner PRs. We performed an enhancer trap screen in order to target genes specifically expressed in PRs. Using the UAS/GAL4 method with enhanced green fluorescent protein (eGFP) as a vital marker, we screened 180000 flies. Out of 2730 lines exhibiting new eGFP patterns, we focused on 16 lines expressing eGFP in particular subsets of PRs. In particular, we describe three lines inserted near the spalt major, m-spondin and furrowed genes, whose respective expression patterns resemble those genes. These genes had not been reported to be expressed in the adult eye. These examples clearly show the ability of our screen to target genes expressed in the adult Drosophila eye.


Development | 2004

Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye.

Pedro M. Domingos; Marek Mlodzik; César S. Mendes; Samara Brown; Hermann Steller; Bertrand Mollereau

The establishment of planar cell polarity in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells. In response to a polarizing factor, Frizzled signaling specifies R3 and induces Delta, which activates Notch in the neighboring cell, specifying it as R4. Here, we show that the spalt zinc-finger transcription factors (spalt major and spalt-related) are part of the molecular mechanisms regulating R3/R4 specification and planar cell polarity establishment. In mosaic analysis, we find that the spalt genes are specifically required in R3 for the establishment of correct ommatidial polarity. In addition, we show that spalt genes are required for proper localization of Flamingo in the equatorial side of R3 and R4, and for the upregulation of Delta in R3. These requirements are very similar to those of frizzled during R3/R4 specification. We show that spalt genes are required cell-autonomously for the expression of seven-up in R3 and R4, and that seven-up is downstream of spalt genes in the genetic hierarchy of R3/R4 specification. Thus, spalt and seven-up are necessary for the correct interpretation of the Frizzled-mediated polarity signal in R3. Finally, we show that, posterior to row seven, seven-up represses spalt in R3/R4 in order to maintain the R3/R4 identity and to inhibit the transformation of these cells to the R7 cell fate.


Journal of Cell Communication and Signaling | 2014

Getting the better of ER stress

Bertrand Mollereau; Serge Manié; Francesco Napoletano

Research over the past few years has highlighted the ability of the unfolded protein response (UPR) to minimize the deleterious effects of accumulated misfolded proteins under both physiological and pathological conditions. The endoplasmic reticulum (ER) adapts to endogenous and exogenous stressors by expanding its protein-folding capacity and by stimulating protective processes such as autophagy and antioxidant responses. Although it is clear that severe ER stress can elicit cell death, several recent studies have shown that low levels of ER stress may actually be beneficial to cells by eliciting an adaptive UPR that ‘preconditions’ the cell to a subsequent lethal insult; this process is called ER hormesis. The findings have important implications for the treatment of a wide variety of diseases associated with defective proteostasis, including neurodegenerative diseases, diabetes, and cancer. Here, we review the physiological and pathological functions of the ER, with a particular focus on the molecular mechanisms that lead to ER hormesis and cellular protection, and discuss the implications for disease treatment.

Collaboration


Dive into the Bertrand Mollereau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Gambis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clémence Levet

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Dali Ma

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marion Robin

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge