Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bertrand Séraphin is active.

Publication


Featured researches published by Bertrand Séraphin.


Nature | 2002

Functional organization of the yeast proteome by systematic analysis of protein complexes

Anne-Claude Gavin; Markus Bösche; Roland Krause; Paola Grandi; Martina Marzioch; Andreas Bauer; Jörg Schultz; Jens Rick; Anne-Marie Michon; Cristina-Maria Cruciat; Marita Remor; Christian Höfert; Malgorzata Schelder; Miro Brajenovic; Heinz Ruffner; Alejandro Merino; Karin Klein; Manuela Hudak; David Dickson; Tatjana Rudi; Volker Gnau; Angela Bauch; Sonja Bastuck; Bettina Huhse; Christina Leutwein; Marie-Anne Heurtier; Richard R. Copley; Angela Edelmann; Erich Querfurth; Vladimir Rybin

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Nature Biotechnology | 1999

A generic protein purification method for protein complex characterization and proteome exploration

Guillaume Rigaut; Anna Shevchenko; Berthold Rutz; Matthias Wilm; Matthias Mann; Bertrand Séraphin

We have developed a generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag. The TAP tag allows the rapid purification of complexes from a relatively small number of cells without prior knowledge of the complex composition, activity, or function. Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein. The TAP method has been tested in yeast but should be applicable to other cells or organisms.


Cell | 2005

Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase

Françoise Wyers; Mathieu Rougemaille; Gwenael Badis; Jean-Claude Rousselle; Marie-Elisabeth Dufour; Jocelyne Boulay; Béatrice Regnault; Frédéric Devaux; Abdelkader Namane; Bertrand Séraphin; Domenico Libri; Alain Jacquier

Since detection of an RNA molecule is the major criterion to define transcriptional activity, the fraction of the genome that is expressed is generally considered to parallel the complexity of the transcriptome. We show here that several supposedly silent intergenic regions in the genome of S. cerevisiae are actually transcribed by RNA polymerase II, suggesting that the expressed fraction of the genome is higher than anticipated. Surprisingly, however, RNAs originating from these regions are rapidly degraded by the combined action of the exosome and a new poly(A) polymerase activity that is defined by the Trf4 protein and one of two RNA binding proteins, Air1p or Air2p. We show that such a polyadenylation-assisted degradation mechanism is also responsible for the degradation of several Pol I and Pol III transcripts. Our data strongly support the existence of a posttranscriptional quality control mechanism limiting inappropriate expression of genetic information.


The EMBO Journal | 2001

Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion

Attila Becskei; Bertrand Séraphin; Luis Serrano

Feedback is a ubiquitous control mechanism of gene networks. Here, we have used positive feedback to construct a synthetic eukaryotic gene switch in Saccharomyces cerevisiae. Within this system, a continuous gradient of constitutively expressed transcriptional activator is translated into a cell phenotype switch when the activator is expressed autocatalytically. This finding is consistent with a mathematical model whose analysis shows that continuous input parameters are converted into a bimodal probability distribution by positive feedback, and that this resembles analog–digital conversion. The autocatalytic switch is a robust property in eukaryotic gene expression. Although the behavior of individual cells within a population is random, the proportion of the cell population displaying either low or high expression states can be regulated. These results have implications for understanding the graded and probabilistic mechanisms of enhancer action and cell differentiation.


Journal of Cell Biology | 2004

Cytoplasmic foci are sites of mRNA decay in human cells

Nicolas Cougot; Sylvie Babajko; Bertrand Séraphin

Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5′–3′ mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear. Functional analysis using fluorescence resonance energy transfer revealed that hDcp1a and hDcp2 interact in vivo in these structures that were shown to differ from the previously described stress granules. Our data indicate that these new structures are dynamic, as they disappear when mRNA breakdown is abolished by treatment with inhibitors. Accumulation of poly(A)+ RNA in these structures, after RNAi-mediated inactivation of the Xrn1 exonuclease, demonstrates that they represent active mRNA decay sites. The occurrence of 5′–3′ mRNA decay in specific subcellular locations in human cells suggests that the cytoplasm of eukaryotic cells may be more organized than previously anticipated.


The EMBO Journal | 2002

Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures

Erwin van Dijk; Nicolas Cougot; Sylke Meyer; Sylvie Babajko; Elmar Wahle; Bertrand Séraphin

We have cloned cDNAs for the human homologues of the yeast Dcp1 and Dcp2 factors involved in the major (5′–3′) and NMD mRNA decay pathways. While yeast Dcp1 has been reported to be the decapping enzyme, we show that recombinant human Dcp2 (hDcp2) is enzymatically active. Dcp2 activity appears evolutionarily conserved. Mutational and biochemical analyses indicate that the hDcp2 MutT/Nudix domain mediates this activity. hDcp2 generates m7GDP and 5′‐phosphorylated mRNAs that are 5′–3′ exonuclease substrates. Corresponding decay intermediates are present in human cells showing the relevance of this activity. hDcp1 and hDcp2 co‐localize in cell cytoplasm, consistent with a role in mRNA decay. Interestingly, these two proteins show a non‐uniform distribution, accumulating in specific foci.


RNA | 2000

REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export.

Françoise Stutz; Angela Bachi; Tobias Doerks; Isabelle C. Braun; Bertrand Séraphin; Matthias Wilm; Peer Bork; Elisa Izaurralde

Vertebrate TAP and its yeast ortholog Mex67p are involved in the export of messenger RNAs from the nucleus. TAP has also been implicated in the export of simian type D viral RNAs bearing the constitutive transport element (CTE). Although TAP directly interacts with CTE-bearing RNAs, the mode of interaction of TAP/Mex67p with cellular mRNAs is different from that with the CTE RNA and is likely to be mediated by protein-protein interactions. Here we show that Mex67p directly interacts with Yra1p, an essential yeast hnRNP-like protein. This interaction is evolutionarily conserved as Yra1p also interacts with TAP. Conditional expression in yeast cells implicates Yra1 p in the export of cellular mRNAs. Database searches revealed that Yra1p belongs to an evolutionarily conserved family of hnRNP-like proteins having more than one member in Mus musculus, Xenopus laevis, Caenorhabditis elegans, and Schizosaccharomyces pombe and at least one member in several species including plants. The murine members of the family directly interact with TAP. Because members of this protein family are characterized by the presence of one RNP-motif RNA-binding domain and exhibit RNA-binding activity, we called these proteins REF-bps for RNA and export factor binding proteins. Thus, Yra1p and members of the REF family of hnRNP-like proteins may facilitate the interaction of TAP/Mex67p with cellular mRNAs.


The EMBO Journal | 2000

A Sm‐like protein complex that participates in mRNA degradation

Emmanuelle Bouveret; Guillaume Rigaut; Anna Shevchenko; Matthias Wilm; Bertrand Séraphin

In eukaryotes, seven Sm proteins bind to the U1, U2, U4 and U5 spliceosomal snRNAs while seven Smlike proteins (Lsm2p–Lsm8p) are associated with U6 snRNA. Another yeast Sm‐like protein, Lsm1p, does not interact with U6 snRNA. Surprisingly, using the tandem affinity purification (TAP) method, we identified Lsm1p among the subunits associated with Lsm3p. Coprecipitation experiments demonstrated that Lsm1p, together with Lsm2p–Lsm7p, forms a new sevensubunit complex. We purified the two related Sm‐like protein complexes and identified the proteins recovered in the purified preparations by mass spectrometry. This confirmed the association of the Lsm2p–Lsm8p complex with U6 snRNA. In contrast, the Lsm1p–Lsm7p complex is associated with Pat1p and Xrn1p exoribonuclease, suggesting a role in mRNA degradation. Deletions of LSM1, 6, 7 and PAT1 genes increased the half‐life of reporter mRNAs. Interestingly, accumulating mRNAs were capped, suggesting a block in mRNA decay at the decapping step. These results indicate the involvement of a new conserved Sm‐like protein complex and a new factor, Pat1p, in mRNA degradation and suggest a physical connection between decapping and exonuclease trimming.


Nature Structural & Molecular Biology | 2007

A single subunit, Dis3, is essentially responsible for yeast exosome core activity

Andrzej Dziembowski; Esben Lorentzen; Elena Conti; Bertrand Séraphin

The conserved core of the exosome, the major eukaryotic 3′ → 5′ exonuclease, contains nine subunits that form a ring similar to the phosphorolytic bacterial PNPase and archaeal exosome, as well as Dis3. Dis3 is homologous to bacterial RNase II, a hydrolytic enzyme. Previous studies have suggested that all subunits are active 3′ → 5′ exoRNases. We show here that Dis3 is responsible for exosome core activity. The purified exosome core has a hydrolytic, processive and Mg2+-dependent activity with characteristics similar to those of recombinant Dis3. Moreover, a catalytically inactive Dis3 mutant has no exosome core activity in vitro and shows in vivo RNA degradation phenotypes similar to those resulting from exosome depletion. In contrast, mutations in Rrp41, the only subunit carrying a conserved phosphorolytic site, appear phenotypically not different from wild-type yeast. We observed that the yeast exosome ring mediates interactions with protein partners, providing an explanation for its essential function.


Science | 2006

Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA.

Christian Brix Folsted Andersen; Lionel Ballut; Jesper S. Johansen; Hala Chamieh; Klaus H. Nielsen; Cristiano L. P. Oliveira; Jan Skov Pedersen; Bertrand Séraphin; Hervé Le Hir; Gregers R. Andersen

In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.

Collaboration


Dive into the Bertrand Séraphin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Graille

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Guillaume Rigaut

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Matthias Wilm

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Fabienne Mauxion

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Berthold Rutz

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Oscar Puig

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge