Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berwyck L. J. Poad is active.

Publication


Featured researches published by Berwyck L. J. Poad.


Journal of the American Society for Mass Spectrometry | 2010

Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids

Berwyck L. J. Poad; Huong T. Pham; Michael C. Thomas; Jessica R. Nealon; J. Larry Campbell; Todd W. Mitchell; Stephen J. Blanksby

Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation. In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell. This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca. 30-fold). These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s: significantly enhancing the utility of OzID in high-throughput lipidomic protocols. The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry. For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry. Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions. This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution.


Journal of the American Chemical Society | 2011

Electron affinities, well depths, and vibrational spectroscopy of cis- and trans-HOCO.

Christopher J. Johnson; Michael E. Harding; Berwyck L. J. Poad; John F. Stanton; Robert E. Continetti

We report vibrationally resolved photoelectron spectra of internally cold HOCO(-) and DOCO(-) anions at wavelengths near and well above the detachment threshold. These spectra are dominated by a strong Franck-Condon progression of three low-energy modes of the cis isomer, the first gas-phase measurement of these vibrations. Using highly resolved, near-threshold spectra we are able to reassign the electron affinities (EAs) of cis- and trans-HOCO to 1.51 ± 0.01 and 1.37 ± 0.01 eV, respectively. Using these EAs, well depths with respect to OH + CO are determined to be 1.07 ± 0.02 eV for trans-HOCO and 0.99 ± 0.02 eV for cis-HOCO. High-level ab initio calculations show excellent agreement with all experimental results. These values will be of direct use in thermochemical calculations and will help to aid in the identification of the HOCO radical in complex reactions.


Journal of Chemical Physics | 2011

Communication: New insight into the barrier governing CO2 formation from OH + CO

Christopher J. Johnson; Berwyck L. J. Poad; Ben B. Shen; Robert E. Continetti

Despite its relative simplicity, the role of tunneling in the reaction OH + CO → H + CO(2) has eluded the quantitative predictive powers of theoretical reaction dynamics. In this study a one-dimensional effective barrier to the formation of H + CO(2) from the HOCO intermediate is directly extracted from dissociative photodetachment experiments on HOCO and DOCO. Comparison of this barrier to a computed minimum-energy barrier shows that tunneling deviates significantly from the calculated minimum-energy pathway, predicting product internal energy distributions that match those found in the experiment and tunneling lifetimes short enough to contribute significantly to the overall reaction. This barrier can be of direct use in kinetic and statistical models and aid in the further refinement of the potential energy surface and reaction dynamics calculations for this system.


Journal of Chemical Physics | 2007

Infrared spectra of the Li+–(H2)n (n=1–3) cation complexes

Corinna Emmeluth; Berwyck L. J. Poad; Christopher Thompson; G. Weddle; Evan J. Bieske

The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.


Journal of Chemical Physics | 2006

Rotationally resolved infrared spectrum of the Li+-D2 cation complex.

Christopher Thompson; Corinna Emmeluth; Berwyck L. J. Poad; G. Weddle; Evan J. Bieske

The infrared spectrum of mass selected Li+–D2 cations is recorded in the D–D stretch region (2860–2950cm−1) in a tandem mass spectrometer by monitoring Li+ photofragments. The D–D stretch vibration of Li+–D2 is shifted by −79cm−1 from that of the free D2 molecule indicating that the vibrational excitation of the D2 subunit strengthens the effective Li+⋯D2 intermolecular interaction. Around 100 rovibrational transitions, belonging to parallel Ka=0-0, 1-1, and 2-2 subbands, are fitted to a Watson A-reduced Hamiltonian to yield effective molecular parameters. The infrared spectrum shows that the complex consists of a Li+ ion attached to a slightly perturbed D2 molecule with a T-shaped equilibrium configuration and a 2.035A vibrationally averaged intermolecular separation. Comparisons are made between the spectroscopic data and data obtained from rovibrational calculations using a recent three dimensional Li+–D2 potential energy surface [R. Martinazzo, G. Tantardini, E. Bodo, and F. Gianturco, J. Chem. Phys. ...


Journal of Chemical Physics | 2007

The Na+–H2 cation complex: Rotationally resolved infrared spectrum, potential energy surface, and rovibrational calculations

Berwyck L. J. Poad; Philip J. Wearne; Evan J. Bieske; Alexei A. Buchachenko; D. I. G. Bennett; Jacek Kłos; Millard H. Alexander

The rotationally resolved infrared spectrum of the Na(+)-H(2) cation complex is recorded in the H-H stretch region (4067-4118 cm(-1)) by monitoring the production of Na(+) photofragments. Altogether 42 lines are identified, 40 of which are assigned to K(a)=1-1 transitions (associated with complexes containing ortho-H(2)) and two tentatively assigned to K(a)=0-0 transitions (associated with complexes containing para-H(2)). The K(a)=1-1 subband lines were fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The band origin is estimated as 4094.6 cm(-1), a shift of -66.6 cm(-1) with respect to the Q(1)(0) transition of the free H(2) molecule. The results demonstrate that Na(+)-H(2) has a T-shaped equilibrium configuration with the Na(+) ion attached to a slightly perturbed H(2) molecule but that large-amplitude vibrational motions significantly influence the rotational constants derived from the asymmetric rigid rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.493 A, increasing slightly (by 0.002 A) when the H(2) subunit is vibrationally excited. A new three-dimensional potential energy surface is developed to describe the Na(+)-H(2) complex. Ab initio points calculated using the CCSD(T) method and aug-cc-pVQZ basis set augmented by bond functions are fitted using a reproducing kernel Hilbert space method [Ho et al., J. Chem. Phys. 104, 2584 (1996)] to give an analytical representation of the potential energy surface. Ensuing variational calculations of the rovibrational energy levels demonstrate that the potential energy surface correctly predicts the frequency of the nu(HH) transition (to within 2.9 cm(-1)) and the dissociation energies [842 cm(-1) for Na(+)-H(2)(para) and 888 cm(-1) for Na(+)-H(2)(ortho)]. The B and C rotational constants are slightly underestimated (by 1.7%), while the vibrationally averaged intermolecular separation is overestimated by 0.02 A.


Journal of the American Chemical Society | 2008

Attachment of molecular hydrogen to an isolated boron cation: An infrared and ab initio study

Viktoras Dryza; Berwyck L. J. Poad; Evan J. Bieske

Structural properties of the B(+)-H2 electrostatic complex are investigated through its rotationally resolved infrared spectrum in the H-H stretch region (3905-3975 cm(-1)). The spectrum, which was obtained by monitoring B(+) photofragments while the IR wavelength was scanned, is consistent with the complex having a T-shaped structure and a vibrationally averaged intermolecular separation of 2.26 A, which decreases by 0.04 A when the H2 subunit is vibrationally excited. The H-H stretch transition of B(+)-H2 is red-shifted by 220.6 +/- 1.5 cm(-1) from that of the free H2 molecule, much more than for other dihydrogen complexes with comparable binding energies. Properties of B(+)-H2 and the related Li(+)-H2, Na(+)-H2, and Al(+)-H2 complexes are explored through ab initio calculations at the MP2/aug-cc-pVTZ level. The unusually large red-shift for B(+)-H2 is explained as due to electron donation from the H2 sigma(g) bonding orbital to the unoccupied 2p(z) orbital on the B(+) ion.


Journal of Physical Chemistry A | 2009

Spectroscopic study of the benchmark Mn+-H2 complex.

Viktoras Dryza; Berwyck L. J. Poad; Evan J. Bieske

We have recorded the rotationally resolved infrared spectrum of the weakly bound Mn+-H2 complex in the H-H stretch region (4022-4078 cm(-1)) by monitoring Mn+ photodissociation products. The band center of Mn+-H2, the H-H stretch transition, is shifted by -111.8 cm(-1) from the transition of the free H2 molecule. The spectroscopic data suggest that the Mn+-H2 complex consists of a slightly perturbed H2 molecule attached to the Mn+ ion in a T-shaped configuration with a vibrationally averaged intermolecular separation of 2.73 A. Together with the measured Mn+...H2 binding energy of 7.9 kJ/mol (Weis, P.; et al. J. Phys. Chem. A 1997, 101, 2809.), the spectroscopic parameters establish Mn+-H2 as the most thoroughly characterized transition-metal cation-dihydrogen complex and a benchmark for calibrating quantum chemical calculations on noncovalent systems involving open d-shell configurations. Such systems are of possible importance for hydrogen storage applications.


Analytical Chemistry | 2017

High-Pressure Ozone-Induced Dissociation for Lipid Structure Elucidation on Fast Chromatographic Timescales

Berwyck L. J. Poad; Martin Raymond Green; Jayne M. Kirk; Nick Tomczyk; Todd W. Mitchell; Stephen J. Blanksby

Ozone-induced dissociation (OzID) is a novel ion activation technology that exploits the gas-phase reaction between mass-selected ions and ozone inside a mass spectrometer to assign sites of unsaturation in complex lipids. Since it was first demonstrated [ Thomas et al. Anal. Chem. 2008 , 80 , 303 ], the method has been widely deployed for targeted lipid structure elucidation but its application to high throughput and liquid chromatography-based workflows has been limited due to the relatively slow nature of the requisite ion-molecule reactions that result in long ion-trapping times and consequently low instrument duty cycle. Here, the implementation of OzID in a high-pressure region, the ion-mobility spectrometry cell, of a contemporary quadrupole time-of-flight mass spectrometer is described. In this configuration, a high number density of ozone was achieved and thus abundant and diagnostic OzID product ions could be observed even on the timescale of transmission through the reaction region (ca. 20-200 ms), representing a 50-1000-fold improvement in performance over prior OzID implementations. Collisional activation applied prereaction was found to yield complementary and structurally informative product ions arising from ozone- and collision-induced dissociation. Ultimately, the compatibility of this implementation with contemporary ultrahigh performance liquid chromatography is demonstrated with the resulting hyphenated approach showing the ability to separate and uniquely identify isomeric phosphatidylcholines that differ only in their position(s) of unsaturation.


Physical Chemistry Chemical Physics | 2012

Attaching molecular hydrogen to metal cations: perspectives from gas-phase infrared spectroscopy

Viktoras Dryza; Berwyck L. J. Poad; Evan J. Bieske

In this perspective article we describe recent infrared spectroscopic investigations of mass-selected M(+)-H(2) and M(+)-D(2) complexes in the gas-phase, with targets that include Li(+)-H(2), B(+)-H(2), Na(+)-H(2), Mg(+)-H(2), Al(+)-H(2), Cr(+)-D(2), Mn(+)-H(2), Zn(+)-D(2) and Ag(+)-H(2). Interactions between molecular hydrogen and metal cations play a key role in several contexts, including in the storage of molecular hydrogen in zeolites, metal-organic frameworks, and doped carbon nanostructures. Arguably, the clearest view of the interaction between dihydrogen and a metal cation can be obtained by probing M(+)-H(2) complexes in the gas phase, free from the complicating influences of solvents or substrates. Infrared spectra of the complexes in the H-H and D-D stretch regions are obtained by monitoring M(+) photofragments as the excitation wavelength is scanned. The spectra, which feature full rotational resolution, confirm that the M(+)-H(2) complexes share a common T-shaped equilibrium structure, consisting essentially of a perturbed H(2) molecule attached to the metal cation, but that the structural and vibrational parameters vary over a considerable range, depending on the size and electronic structure of the metal cation. Correlations are established between intermolecular bond lengths, dissociation energies, and frequency shifts of the H-H stretch vibrational mode. Ultimately, the M(+)-H(2) and M(+)-D(2) infrared spectra provide a comprehensive set of benchmarks for modelling and understanding the M(+)···H(2) interaction.

Collaboration


Dive into the Berwyck L. J. Poad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Blanksby

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben B. Shen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge