Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bess A. Marshall is active.

Publication


Featured researches published by Bess A. Marshall.


Journal of Clinical Investigation | 1995

Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice.

Jian-Ming Ren; Bess A. Marshall; Mike Mueckler; M. Mccaleb; J. M. Amatruda; Gerald I. Shulman

The effect of increased Glut4 protein expression in muscle and fat on the whole body glucose metabolism has been evaluated by the euglycemic hyperinsulinemic clamp technique in conscious mice. Fed and fasting plasma glucose concentrations were 172 +/- 7 and 78 +/- 7 mg/dl, respectively, in transgenic mice, and were significantly lower than that of nontransgenic littermates (208 +/- 5 mg/dl in fed; 102 +/- 5 mg/dl in fasting state). Plasma lactate concentrations were higher in transgenic mice, (6.5 +/- 0.7 mM in the fed and 5.8 +/- 1.0 mM in fasting state) compared with that of non-transgenic littermates (4.7 +/- 0.3 mM in the fed and 4.2 +/- 0.5 mM in fasting state). In the fed state, the rate of whole body glucose disposal was 70% higher in transgenic mice in the basal state, 81 and 54% higher during submaximal and maximal insulin stimulation. In the fasting state, insulin-stimulated whole body glucose disposal was also higher in the transgenic mice. Hepatic glucose production after an overnight fast was 24.8 +/- 0.7 mg/kg per min in transgenic mice, and 25.4 +/- 2.7 mg/kg per min in nontransgenic mice. Our data demonstrate that overexpression of Glut4 protein in muscle increases basal as well as insulin-stimulated whole body glucose disposal. These results suggest that skeletal muscle glucose transport is rate-limiting for whole body glucose disposal and that the Glut4 protein is a potential target for pharmacological or genetic manipulation for treatment of patients with non-insulin-dependent diabetes mellitus.


Journal of Biological Chemistry | 1998

A High Fat Diet Impairs Stimulation of Glucose Transport in Muscle FUNCTIONAL EVALUATION OF POTENTIAL MECHANISMS

Polly A. Hansen; Dong Ho Han; Bess A. Marshall; Lorraine A. Nolte; May M. Chen; Mike Mueckler; John O. Holloszy

A high fat diet causes resistance of skeletal muscle glucose transport to insulin and contractions. We tested the hypothesis that fat feeding causes a change in plasma membrane composition that interferes with functioning of glucose transporters and/or insulin receptors. Epitrochlearis muscles of rats fed a high (50% of calories) fat diet for 8 weeks showed ∼50% decreases in insulin- and contraction-stimulated 3-O-methylglucose transport. Similar decreases in stimulated glucose transport activity occurred in muscles of wild-type mice with 4 weeks of fat feeding. In contrast, GLUT1 overexpressing muscles of transgenic mice fed a high fat diet showed no decreases in their high rates of glucose transport, providing evidence against impaired glucose transporter function. Insulin-stimulated system A amino acid transport, insulin receptor (IR) tyrosine kinase activity, and insulin-stimulated IR and IRS-1 tyrosine phosphorylation were all normal in muscles of rats fed the high fat diet for 8 weeks. However, after 30 weeks on the high fat diet, there was a significant reduction in insulin-stimulated tyrosine phosphorylation in muscle. The increases in GLUT4 at the cell surface induced by insulin or muscle contractions, measured with the 3H-labeled 2-N-4-(1-azi-2,2,2-trifluoroethyl)-benzoyl-1,3-bis-(d-mannose-4-yloxy)-2-propylamine photolabel, were 26–36% smaller in muscles of the 8-week high fat-fed rats as compared with control rats. Our findings provide evidence that (a) impairment of muscle glucose transport by 8 weeks of high fat feeding is not due to plasma membrane composition-related reductions in glucose transporter or insulin receptor function, (b) a defect in insulin receptor signaling is a late event, not a primary cause, of the muscle insulin resistance induced by fat feeding, and (c) impaired GLUT4 translocation to the cell surface plays a major role in the decrease in stimulated glucose transport.


Journal of Biological Chemistry | 1998

Dissociation of GLUT4 Translocation and Insulin-stimulated Glucose Transport in Transgenic Mice Overexpressing GLUT1 in Skeletal Muscle

Polly A. Hansen; Weichen Wang; Bess A. Marshall; John O. Holloszy; Mike Mueckler

Overexpression of the human GLUT1 glucose transporter protein in skeletal muscle of transgenic mice results in large increases in basal glucose transport and metabolism, but impaired stimulation of glucose transport by insulin, contractions, or hypoxia (Gulve, E. A., Ren, J.-M., Marshall, B. A., Gao, J., Hansen, P. A., Holloszy, J. O., and Mueckler, M. (1994)J. Biol. Chem. 269, 18366–18370). This study examined the relationship between glucose transport and cell-surface glucose transporter content in isolated skeletal muscle from wild-type and GLUT1-overexpressing mice using 2-deoxyglucose, 3-O-methylglucose, and the 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis(d-mannos-4-yloxy)-2-propylamine exofacial photolabeling technique. Insulin (2 milliunits/ml) stimulated a 3-fold increase in 2-deoxyglucose uptake in extensor digitorum longus muscles of control mice (0.47 ± 0.07 μmol/ml/20 min in basal muscle versus 1.44 μmol/ml/20 min in insulin-stimulated muscle; mean ± S.E.). Insulin failed to increase 2-deoxyglucose uptake above basal rates in muscles overexpressing GLUT1 (4.00 ± 0.40 μmol/ml/20 min in basal muscle versus 3.96 ± 0.37 μmol/ml/20 min in insulin-stimulated muscle). A similar lack of insulin stimulation in muscles overexpressing GLUT1 was observed using 3-O-methylglucose. However, the magnitude of the insulin-stimulated increase in cell-surface GLUT4 photolabeling was nearly identical (∼3-fold) in wild-type and GLUT1-overexpressing muscles. This apparently normal insulin-stimulated translocation of GLUT4 in GLUT1-overexpressing muscle was confirmed by immunoelectron microscopy. Our findings suggest that GLUT4 activity at the plasma membrane can be dissociated from the plasma membrane content of GLUT4 molecules and thus suggest that the intrinsic activity of GLUT4 is subject to regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Hyperinsulinism induced by targeted suppression of beta cell KATP channels

Joseph C. Koster; Maria S. Remedi; T. P. Flagg; James D. Johnson; K. P. Markova; Bess A. Marshall; Colin G. Nichols

ATP-sensitive K+ (KATP) channels couple cell metabolism to electrical activity. To probe the role of KATP in glucose-induced insulin secretion, we have generated transgenic mice expressing a dominant-negative, GFP-tagged KATP channel subunit in which residues 132–134 (Gly-Tyr-Gly) in the selectivity filter were replaced by Ala-Ala-Ala, under control of the insulin promoter. Transgene expression was confirmed by both beta cell-specific green fluorescence and complete suppression of channel activity in those cells (≈70%) that did fluoresce. Transgenic mice developed normally with no increased mortality and displayed normal body weight, blood glucose levels, and islet architecture. However, hyperinsulinism was evident in adult mice as (i) a disproportionately high level of circulating serum insulin for a given glucose concentration (≈2-fold increase in blood insulin), (ii) enhanced glucose-induced insulin release from isolated islets, and (iii) mild yet significant enhancement in glucose tolerance. Enhanced glucose-induced insulin secretion results from both increased glucose sensitivity and increased release at saturating glucose concentration. The results suggest that incomplete suppression of KATP channel activity can give rise to a maintained hyperinsulinism.


Journal of Biological Chemistry | 1999

Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion.

Bess A. Marshall; Karen Tordjman; Helen H. Host; Nancy J. Ensor; Guim Kwon; Connie A. Marshall; Trey Coleman; Michael L. McDaniel; Clay F. Semenkovich

Lipoprotein lipase (LPL) provides tissues with fatty acids, which have complex effects on glucose utilization and insulin secretion. To determine if LPL has direct effects on glucose metabolism, we studied mice with heterozygous LPL deficiency (LPL+/−). LPL+/− mice had mean fasting glucose values that were up to 39 mg/dl lower than LPL+/+ littermates. Despite having lower glucose levels, LPL+/− mice had fasting insulin levels that were twice those of +/+ mice. Hyperinsulinemic clamp experiments showed no effect of genotype on basal or insulin-stimulated glucose utilization. LPL message was detected in mouse islets, INS-1 cells (a rat insulinoma cell line), and human islets. LPL enzyme activity was detected in the media from both mouse and human islets incubated in vitro. In mice, +/− islets expressed half the enzyme activity of +/+ islets. Islets isolated from +/+ mice secreted less insulin in vitro than +/− and −/− islets, suggesting that LPL suppresses insulin secretion. To test this notion directly, LPL enzyme activity was manipulated in INS-1 cells. INS-1 cells treated with an adeno-associated virus expressing human LPL had more LPL enzyme activity and secreted less insulin than adeno-associated virus-β-galactosidase-treated cells. INS-1 cells transfected with an antisense LPL oligonucleotide had less LPL enzyme activity and secreted more insulin than cells transfected with a control oligonucleotide. These data suggest that islet LPL is a novel regulator of insulin secretion. They further suggest that genetically determined levels of LPL play a role in establishing glucose levels in mice.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome

Simin Lu; Kohsuke Kanekura; Takashi Hara; Jana Mahadevan; Larry D. Spears; Christine M. Oslowski; Rita Martinez; Mayu Yamazaki-Inoue; Masashi Toyoda; Amber Neilson; Patrick Blanner; Cris M. Brown; Clay F. Semenkovich; Bess A. Marshall; Tamara Hershey; Akihiro Umezawa; Peter A. Greer; Fumihiko Urano

Significance Wolfram syndrome is an autosomal recessive disorder characterized by juvenile diabetes and neurodegeneration, and is considered a prototype of human endoplasmic reticulum (ER) disease. Wolfram syndrome is caused by loss of function mutations of Wolfram syndrome 1 or Wolfram syndrome 2 genes, which encode transmembrane proteins localized to the ER. Despite its rarity, Wolfram syndrome represents the best human disease model currently available to identify drugs and biomarkers associated with ER health. Furthermore, this syndrome is ideal for studying the mechanisms of ER stress-mediated death of neurons and β cells. Here we report that the pathway leading to calpain activation offers potential drug targets for Wolfram syndrome and substrates for calpain might serve as biomarkers for this syndrome. Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.


Pediatric Diabetes | 2009

Successful sulfonylurea treatment of an insulin-naïve neonate with diabetes mellitus due to a KCNJ11 mutation.

Jennifer A. Wambach; Bess A. Marshall; Joseph C. Koster; Neil H. White; Colin G. Nichols

Wambach JA, Marshall BA, Koster JC, White NH, Nichols CG. Successful sulfonylurea treatment of an insulin‐naïve neonate with diabetes mellitus due to a KCNJ11 mutation.


Journal of Biological Chemistry | 2000

Transgenic Overexpression of Hexokinase II in Skeletal Muscle Does not Increase Glucose Disposal in Wild-Type or Glut1-Overexpressing Mice

Polly A. Hansen; Bess A. Marshall; May Chen; John O. Holloszy; Mike Mueckler

Glut1 transgenic mice were bred with transgenic mice that overexpress hexokinase II in skeletal muscle in order to determine whether whole-body glucose disposal could be further augmented in mice overexpressing glucose transporters. Overexpression of hexokinase alone in skeletal muscle had no effect on glucose transport or metabolism in isolated muscles, nor did it alter blood glucose levels or the rate of whole-body glucose disposal. Expression of the hexokinase transgene in the context of the Glut1 transgenic background did not alter glucose transport in isolated muscles but did cause additional increases in steady-state glucose 6-phosphate (3.2-fold) and glycogen (7.5-fold) levels compared with muscles that overexpress the Glut1 transporter alone. Surprisingly, however, these increases were not accompanied by a change in basal or insulin-stimulated whole-body glucose disposal in the doubly transgenic mice compared with Glut1 transgenic mice, probably due to an inhibition of de novo glycogen synthesis as a result of the high levels of steady-state glycogen in the muscles of doubly transgenic mice (430 μmol/g versus 10 μmol/g in wild-type mice). We conclude that the hexokinase gene may not be a good target for therapies designed to counteract insulin resistance or hyperglycemia.


American Journal of Physiology-endocrinology and Metabolism | 1999

GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance

Bess A. Marshall; Polly A. Hansen; Nancy J. Ensor; M. Allison Ogden; Mike Mueckler

Insulin-stimulated glucose uptake is defective in patients with type 2 diabetes. To determine whether transgenic glucose transporter overexpression in muscle can prevent diabetes induced by a high-fat, high-sugar diet, singly (GLUT-1, GLUT-4) and doubly (GLUT-1 and -4) transgenic mice were placed on a high-fat, high-sugar diet or a standard chow diet. On the high-fat, high-sugar diet, wild-type but not transgenic mice developed fasting hyperglycemia and glucose intolerance (peak glucose of 337 ± 19 vs. 185-209 mg/dl in the same groups on the high-fat, high-sugar diet and 293 ± 13 vs. 166-194 mg/dl on standard chow). Hyperinsulinemic clamps showed that transporter overexpression elevated insulin-stimulated glucose utilization on standard chow (49 ± 4 mg ⋅ kg-1 ⋅ min-1in wild-type vs. 61 ± 4, 67 ± 5, and 63 ± 6 mg ⋅ kg-1 ⋅ min-1in GLUT-1, GLUT-4, and GLUT-1 and -4 transgenic mice given 20 mU ⋅ kg-1 ⋅ min-1insulin, and 54 ± 7, 85 ± 4, and 98 ± 11 in wild-type, GLUT-1, and GLUT-4 mice given 60-80 mU ⋅ kg-1 ⋅ min-1insulin). On the high-fat, high-sugar diet, wild-type and GLUT-1 mice developed marked insulin resistance, but GLUT-4 and GLUT-1 and -4 mice were somewhat protected (glucose utilization during hyperinsulinemic clamp of 28.5 ± 3.4 vs. 42.4 ± 5.9, 51.2 ± 8.1, and 55.9 ± 4.9 mg ⋅ kg-1 ⋅ min-1in wild type, GLUT-1, GLUT-4, GLUT-1 and -4 mice). These data demonstrate that overexpression of GLUT-1 and/or GLUT-4 enhances whole body glucose utilization and prevents the development of fasting hyperglycemia and glucose intolerance induced by a high-fat, high-sugar diet. GLUT-4 overexpression improves the insulin resistance induced by the diet. We conclude that upregulation of glucose transporters in skeletal muscle may be an effective therapeutic approach to the treatment of human type 2 diabetes.Insulin-stimulated glucose uptake is defective in patients with type 2 diabetes. To determine whether transgenic glucose transporter overexpression in muscle can prevent diabetes induced by a high-fat, high-sugar diet, singly (GLUT-1, GLUT-4) and doubly (GLUT-1 and -4) transgenic mice were placed on a high-fat, high-sugar diet or a standard chow diet. On the high-fat, high-sugar diet, wild-type but not transgenic mice developed fasting hyperglycemia and glucose intolerance (peak glucose of 337 +/- 19 vs. 185-209 mg/dl in the same groups on the high-fat, high-sugar diet and 293 +/- 13 vs. 166-194 mg/dl on standard chow). Hyperinsulinemic clamps showed that transporter overexpression elevated insulin-stimulated glucose utilization on standard chow (49 +/- 4 mg. kg-1. min-1 in wild-type vs. 61 +/- 4, 67 +/- 5, and 63 +/- 6 mg. kg-1. min-1 in GLUT-1, GLUT-4, and GLUT-1 and -4 transgenic mice given 20 mU. kg-1. min-1 insulin, and 54 +/- 7, 85 +/- 4, and 98 +/- 11 in wild-type, GLUT-1, and GLUT-4 mice given 60-80 mU. kg-1. min-1 insulin). On the high-fat, high-sugar diet, wild-type and GLUT-1 mice developed marked insulin resistance, but GLUT-4 and GLUT-1 and -4 mice were somewhat protected (glucose utilization during hyperinsulinemic clamp of 28.5 +/- 3.4 vs. 42.4 +/- 5.9, 51.2 +/- 8.1, and 55.9 +/- 4. 9 mg. kg-1. min-1 in wild type, GLUT-1, GLUT-4, GLUT-1 and -4 mice). These data demonstrate that overexpression of GLUT-1 and/or GLUT-4 enhances whole body glucose utilization and prevents the development of fasting hyperglycemia and glucose intolerance induced by a high-fat, high-sugar diet. GLUT-4 overexpression improves the insulin resistance induced by the diet. We conclude that upregulation of glucose transporters in skeletal muscle may be an effective therapeutic approach to the treatment of human type 2 diabetes.


Orphanet Journal of Rare Diseases | 2012

Early presentation of gait impairment in Wolfram Syndrome

Kristen A. Pickett; Ryan P. Duncan; James Hoekel; Bess A. Marshall; Tamara Hershey; Gammon M. Earhart

BackgroundClassically characterized by early onset insulin-dependent diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological abnormalities, Wolfram syndrome (WFS) is also associated with atypical brainstem and cerebellar findings in the first decade of life. As such, we hypothesized that gait differences between individuals with WFS and typically developing (TD) individuals may be detectable across the course of the disease.MethodsGait was assessed for 13 individuals with WFS (min 6.4 yrs, max 25.8 yrs) and 29 age-matched, typically developing individuals (min 5.6 yrs, max 28.5 yrs) using a GAITRite ® walkway system. Velocity, cadence, step length, base of support and double support time were compared between groups.ResultsAcross all tasks, individuals with WFS walked slower (p = 0.03), took shorter (p ≤ 0.001) and wider (p ≤ 0.001) steps and spent a greater proportion of the gait cycle in double support (p = 0.03) compared to TD individuals. Cadence did not differ between groups (p = 0.62). Across all tasks, age was significantly correlated with cadence and double support time in the TD group but only double support time was correlated with age in the WFS group and only during preferred pace forward (rs= 0.564, p = 0.045) and dual task forward walking (rs= 0.720, p = 0.006) tasks. Individuals with WFS also had a greater number of missteps during tandem walking (p ≤ 0.001). Within the WFS group, spatiotemporal measures of gait did not correlate with measures of visual acuity. Balance measures negatively correlated with normalized gait velocity during fast forward walking (rs = −0.59, p = 0.03) and percent of gait cycle in double support during backward walking (rs = −0.64, p = 0.03).ConclusionsQuantifiable gait impairments can be detected in individuals with WFS earlier than previous clinical observations suggested. These impairments are not fully accounted for by the visual or balance deficits associated with WFS, and may be a reflection of early cerebellar and/or brainstem abnormalities. Effective patient-centered treatment paradigms could benefit from a more complete understanding of the progression of motor and other neurological symptom presentation in individuals with WFS.

Collaboration


Dive into the Bess A. Marshall's collaboration.

Top Co-Authors

Avatar

Mike Mueckler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tamara Hershey

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John O. Holloszy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Polly A. Hansen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Colin G. Nichols

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Neil H. White

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria S. Remedi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alex R. Paciorkowski

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

E. A. Gulve

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge