Bessie W. Kebaara
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bessie W. Kebaara.
Antimicrobial Agents and Chemotherapy | 2003
Jacob M. Hornby; Bessie W. Kebaara; Kenneth W. Nickerson
ABSTRACT The dimorphic fungus Candida albicans produces farnesol as a quorum-sensing molecule that regulates cellular morphology. The biosynthetic origin of farnesol has been resolved by treating these cells with zaragozic acid B, a potent inhibitor of squalene synthase in the sterol biosynthetic pathway. Treatment with zaragozic acid B leads to an eightfold increase in the amount of farnesol produced by C. albicans. Furthermore, C. albicans cell extracts contain enzymatic activity to convert [3H]farnesyl pyrophosphate to [3H]farnesol. Many common antifungal antibiotics (e.g., zaragozic acids, azoles, and allylamines) target steps in sterol biosynthesis. We suggest that the fungicidal activity of zaragozic acid derives in large part from the accumulation of farnesol that accompanies the inhibition of sterol biosynthesis.
Eukaryotic Cell | 2008
Bessie W. Kebaara; Melanie L. Langford; Dhammika H. M. L. P. Navarathna; Raluca Dumitru; Kenneth W. Nickerson; Audrey L. Atkin
ABSTRACT Candida albicans is a dimorphic fungus that can interconvert between yeast and filamentous forms. Its ability to regulate morphogenesis is strongly correlated with virulence. Tup1, a transcriptional repressor, and the signaling molecule farnesol are both capable of negatively regulating the yeast to filamentous conversion. Based on this overlap in function, we tested the hypothesis that the cellular response to farnesol involves, in part, the activation of Tup1. Tup1 functions with the DNA binding proteins Nrg1 and Rfg1 as a transcription regulator to repress the expression of hypha-specific genes. The tup1/tup1 and nrg1/nrg1 mutants, but not the rfg1/rfg1 mutant, failed to respond to farnesol. Treatment of C. albicans cells with farnesol caused a small but consistent increase in both TUP1 mRNA and protein levels. Importantly, this increase corresponds with the commitment point, beyond which added farnesol no longer blocks germ tube formation, and it correlates with a strong decrease in the expression of two Tup1-regulated hypha-specific genes, HWP1 and RBT1. Tup1 probably plays a direct role in the response to farnesol because farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of filament development), NRG1, or RFG1 mRNA levels, demonstrating specific gene regulation in response to farnesol. Furthermore, the tup1/tup1 and nrg1/nrg1 mutants produced 17- and 19-fold more farnesol, respectively, than the parental strain. These levels of excess farnesol are sufficient to block filamentation in a wild-type strain. Our data are consistent with the role of Tup1 as a crucial component of the response to farnesol in C. albicans.
Nucleic Acids Research | 2009
Bessie W. Kebaara; Audrey L. Atkin
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.
Applied and Environmental Microbiology | 2008
Suman Ghosh; Bessie W. Kebaara; Audrey L. Atkin; Kenneth W. Nickerson
ABSTRACT Colonization by the fungal pathogen Candida albicans varies significantly, depending upon the pH and availability of oxygen. Because of our interest in extracellular molecules as potential quorum-sensing molecules, we examined the physiological conditions which regulate the production of the aromatic alcohols, i.e., phenethyl alcohol, tyrosol, and tryptophol. The production of these fusel oils has been well studied for Saccharomyces cerevisiae. Our data show that aromatic alcohol yields for C. albicans are determined by growth conditions. These conditions include the availability of aromatic amino acids, the pH, oxygen levels, and the presence of ammonium salts. For example, for wild-type C. albicans, tyrosol production varied 16-fold merely with the inclusion of tyrosine or ammonium salts in the growth medium. Aromatic alcohol production also depends on the transcription regulator Aro80p. Our results are consistent with aromatic alcohol production—aromatic transaminases (gene products for ARO8 and ARO9), aromatic decarboxylase (ARO10), and alcohol dehydrogenase (ADH)—via the fusel oil pathway. The expression of ARO8, ARO9, and ARO10 is also pH dependent. ARO8 and ARO9 were alkaline upregulated, while ARO10 was alkaline downregulated. The alkaline-dependent change in expression of ARO8 was Rim101 independent, while the expression of ARO9 was Rim101 dependent.
Eukaryotic Cell | 2014
Megan Peccarelli; Bessie W. Kebaara
ABSTRACT The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs. The degradation of natural mRNAs by NMD has been identified in multiple eukaryotes, including Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana, and humans. S. cerevisiae is used extensively as a model to study natural mRNA regulation by NMD. Inactivation of the NMD pathway in S. cerevisiae affects approximately 10% of the transcriptome. Similar percentages of natural mRNAs in the D. melanogaster and human transcriptomes are also sensitive to the pathway, indicating that NMD is important for the regulation of gene expression in multiple organisms. NMD can either directly or indirectly regulate the decay rate of natural mRNAs. Direct NMD targets possess NMD-inducing features. This minireview focuses on the regulation of natural mRNAs by the NMD pathway, as well as the features demonstrated to target these mRNAs for decay by the pathway in S. cerevisiae. We also compare NMD-targeting features identified in S. cerevisiae with known NMD-targeting features in other eukaryotic organisms.
Current Genetics | 2003
Bessie W. Kebaara; Tara J. Nazarenus; Rachel Taylor; Audrey L. Atkin
Abstract The Saccharomyces cerevisiae nonsense-mediated mRNA decay (NMD) pathway targets mRNAs with premature stop codons and some wild-type mRNAs for accelerated decay. Upf1p, Upf2p and Upf3p are required for NMD. NMD-targeted mRNAs are degraded rapidly in wild-type cells and stabilized in upf1, upf2 or upf3 mutants. We report here that the relative CYH2 pre-mRNA/mRNA accumulation is enhanced in cells derived from a W303 background, compared with a variety of commonly used strains. The enhanced CYH2 pre-mRNA accumulation phenotype results from a larger difference in mRNA half-lives in the W303 strains than two previously used strains. This phenotype can be selected in crosses and is also seen in upf2 and upf3 mutants. These results suggest there are genes that influence the efficiency of NMD and that yeast strains derived from the W303 background may be useful for measurement of abundance and half-lives of low abundance, short-lived NMD substrates.
Eukaryotic Cell | 2005
Rachel Taylor; Bessie W. Kebaara; Tara J. Nazarenus; Ashley Jones; Rena Yamanaka; Rachel Uhrenholdt; Jason P. Wendler; Audrey L. Atkin
ABSTRACT The nonsense-mediated mRNA decay (NMD) pathway has historically been thought of as an RNA surveillance system that degrades mRNAs with premature translation termination codons, but the NMD pathway of Saccharomyces cerevisiae has a second role regulating the decay of some wild-type mRNAs. In S. cerevisiae, a significant number of wild-type mRNAs are affected when NMD is inactivated. These mRNAs are either wild-type NMD substrates or mRNAs whose abundance increases as an indirect consequence of NMD. A current challenge is to sort the mRNAs that accumulate when NMD is inactivated into direct and indirect targets. We have developed a bioinformatics-based approach to address this challenge. Our approach involves using existing genomic and function databases to identify transcription factors whose mRNAs are elevated in NMD-deficient cells and the genes that they regulate. Using this strategy, we have investigated a coregulated set of genes. We have shown that NMD regulates accumulation of ADR1 and GAL4 mRNAs, which encode transcription activators, and that Adr1 is probably a transcription activator of ATS1. This regulation is physiologically significant because overexpression of ADR1 causes a respiratory defect that mimics the defect seen in strains with an inactive NMD pathway. This strategy is significant because it allows us to classify the genes regulated by NMD into functionally related sets, an important step toward understanding the role NMD plays in the normal functioning of yeast cells.
Current Genetics | 2011
Rafael Deliz-Aguirre; Audrey L. Atkin; Bessie W. Kebaara
The eukaryotic nonsense-mediated mRNA (NMD) is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons, and importantly some natural mRNAs as well. Natural mRNAs with atypically long 3′-untranslated regions (UTRs) are degraded by NMD in Saccharomyces cerevisiae. A number of S. cerevisiae mRNAs undergo alternative 3′-end processing producing mRNA isoforms that differ in their 3′-UTR lengths. Some of these alternatively 3′-end processed mRNA isoforms have atypically long 3′-UTRs and would be likely targets for NMD-mediated degradation. Here, we investigated the role NMD plays in the regulation of expression of CTR2, which encodes a vacuolar membrane copper transporter. CTR2 pre-mRNA undergoes alternative 3′-end processing to produce two mRNA isoforms with 300-nt and 2-kb 3′-UTRs. We show that both CTR2 mRNA isoforms are differentially regulated by NMD. The regulation of CTR2 mRNA by NMD has physiological consequences, since nmd mutants are more tolerant to toxic levels of copper relative to wild-type yeast cells and the copper tolerance of nmd mutants is dependent on the presence of CTR2.
Current protocols in pharmacology | 2012
Bessie W. Kebaara; Kristian E. Baker; Krista D. Patefield; Audrey L. Atkin
Nonsense‐mediated mRNA decay is a highly conserved pathway that degrades mRNAs with premature termination codons. These mRNAs include mRNAs transcribed from nonsense or frameshift alleles as well as wild‐type mRNA with signals that direct ribosomes to terminate prematurely. This unit describes techniques to monitor steady‐state mRNA levels, decay rates, and structural features of mRNAs targeted by this pathway, as well as in vivo analysis of nonsense suppression and allosuppression in the yeast Saccharomyces cerevisiae. Protocols for the structural features of mRNA include analysis of cap status, 5′ and 3′ untranslated region (UTR) lengths, and poly(A) tail length. Curr. Protoc. Cell Biol. 54:27.3.1‐27.3.39.
Yeast | 2013
Xuya Wang; Obi Okonkwo; Bessie W. Kebaara
The eukaryotic nonsense‐mediated mRNA decay pathway (NMD) is a specialized pathway that contributes to the recognition and rapid degradation of mRNA with premature termination codons. In addition to mRNAs containing premature termination codons, NMD degrades non‐nonsense‐containing, natural mRNAs. Approximately 5–10% of the total Saccharomyces cerevisiae transcriptome is affected when NMD is inactivated. The regulation of natural mRNAs by NMD has physiological consequences. However, the physiological outcomes associated with the degradation of specific natural mRNAs by NMD are not fully understood. Here, we examined the physiological consequences resulting from the NMD‐mediated regulation of an mRNA involved in copper homeostasis, in an attempt to understand why nmd mutant strains are more tolerant of toxic copper levels than wild‐type yeast strains. We found that wild‐type (UPF1) and upf1Δ mutants accumulate similar amounts of total copper when grown in medium containing elevated levels of copper; however, the copper levels in the cytoplasm of wild‐type yeast cells were higher than in the upf1Δ mutant. Copper tolerance by the upf1Δ mutant is dependent on the presence of CTR2. Deletion of CTR2 resulted in similar cytoplasmic copper levels in wild‐type and upf1Δ mutant strains, regardless of the environmental copper levels. This suggests that CTR2 plays a role in regulating the level of copper in the cytoplasm. We also found that the upf1Δ mutant contained elevated copper levels in the vacuole relative to wild‐type yeast cells, after both strains were exposed to elevated copper levels. Copyright