Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beth A. Kozel is active.

Publication


Featured researches published by Beth A. Kozel.


Journal of Medical Genetics | 2010

Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size

Marwan Shinawi; Pengfei Liu; Sung Hae L Kang; Joseph Shen; John W. Belmont; Daryl A. Scott; Frank J. Probst; William J. Craigen; Brett H. Graham; Amber Pursley; Gary D. Clark; Jennifer A. Lee; Monica Proud; Amber Stocco; Diana L. Rodriguez; Beth A. Kozel; Steven Sparagana; Elizabeth Roeder; Susan G. McGrew; Thaddeus W. Kurczynski; Leslie J. Allison; Stephen Amato; Sarah Savage; Ankita Patel; Pawel Stankiewicz; Arthur L. Beaudet; Sau Wai Cheung; James R. Lupski

Background Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. Method We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. Results The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures (∼40%), behavioural problems (∼40%), congenital anomalies (∼30%), and autism (∼20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. Conclusions Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.


Journal of Cellular Physiology | 2006

Elastic fiber formation: A dynamic view of extracellular matrix assembly using timer reporters

Beth A. Kozel; Brenda J. Rongish; Andras Czirok; Julia Zach; Charles D. Little; Elaine C. Davis; Russell H. Knutsen; Jessica E. Wagenseil; Marilyn A. Levy; Robert P. Mecham

To study the dynamics of elastic fiber assembly, mammalian cells were transfected with a cDNA construct encoding bovine tropoelastin in frame with the Timer reporter. Timer is a derivative of the DsRed fluorescent protein that changes from green to red over time and, hence, can be used to distinguish new from old elastin. Using dynamic imaging microscopy, we found that the first step in elastic fiber formation is the appearance of small cell surface‐associated elastin globules that increased in size with time (microassembly). The elastin globules are eventually transferred to pre‐existing elastic fibers in the extracellular matrix where they coalesce into larger structures (macroassembly). Mechanical forces associated with cell movement help shape the forming, extracellular elastic fiber network. Time‐lapse imaging combined with the use of Timer constructs provides unique tools for studying the temporal and spatial aspects of extracellular matrix formation by live cells. J. Cell. Physiol. 207: 87–96, 2006.


Journal of Biological Chemistry | 2005

Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain.

Thomas J. Broekelmann; Beth A. Kozel; Hideaki Ishibashi; Claudio C. Werneck; Fred W. Keeley; Lijuan Zhang; Robert P. Mecham

Using a biochemical and cell biological approach, we have identified a cell interaction site at the carboxyl terminus of tropoelastin. Cell interactions with the COOH-terminal sequence are not through the elastin-binding protein (EBP67) because neither VGVAPG-like peptides nor galactoside sugars altered adhesion. Our results also show that cell adhesion to tropoelastin is not promoted by integrins. Through the use of mutant Chinese hamster ovary cell lines defective in glycosaminoglycan biosynthesis, as well as competition studies and enzymatic removal of specific cell-surface glycosaminoglycans, the tropoelastin-binding moieties on the cell surface were identified as heparan and chondroitin sulfate-containing glycosaminoglycans, with heparan sulfate being greatly preferred. Heparin affinity chromatography combined with cell adhesion assays identified the last 17 amino acids as the sequence element at the carboxyl terminus of tropoelastin responsible for the adhesive activity.


Journal of Biological Chemistry | 2003

Domains in tropoelastin that mediate elastin deposition in vitro and in vivo.

Beth A. Kozel; Hiroshi Wachi; Elaine C. Davis; Robert P. Mecham

Elastic fiber assembly is a complicated process involving multiple different proteins and enzyme activities. However, the specific protein-protein interactions that facilitate elastin polymerization have not been defined. To identify domains in the tropoelastin molecule important for the assembly process, we utilized an in vitro assembly model to map sequences within tropoelastin that facilitate its association with fibrillin-containing microfibrils in the extracellular matrix. Our results show that an essential assembly domain is located in the C-terminal region of the molecule, encoded by exons 29–36. Fine mapping studies using an exon deletion strategy and synthetic peptides identified the hydrophobic sequence in exon 30 as a major functional element in this region and suggested that the assembly process is driven by the propensity of this sequence to form β-sheet structure. Tropoelastin molecules lacking the C-terminal assembly domain expressed as transgenes in mice did not assemble nor did they interfere with assembly of full-length normal mouse elastin. In addition to providing important information about elastin assembly in general, the results of this study suggest how removal or alteration of the C terminus through stop or frameshift mutations might contribute to the elastin-related diseases supravalvular aortic stenosis and cutis laxa.


Journal of Cellular Physiology | 2006

Elastic fiber macro-assembly is a hierarchical, cell motion-mediated process

Andras Czirok; Julia Zach; Beth A. Kozel; Robert P. Mecham; Elaine C. Davis; Brenda J. Rongish

Elastic fibers are responsible for the extensibility and resilience of many vertebrate tissues, and improperly assembled elastic fibers are implicated in a number of human diseases. It was recently demonstrated that in vitro, cells first secrete tropoelastin into a punctate pattern of globules. To study the dynamics of macroassembly, that is, the assembly of the secreted tropoelastin globules into elastic fibers, we utilized long‐term time‐lapse immunofluorescence imaging and a tropoelastin p Timer fusion protein, which shifts its fluorescence spectrum over time. Pulse‐chase immunolabeling of the fibroblast‐like RFL‐6 cells demonstrates that tropoelastin globules aggregate in a hierarchical manner, creating progressively larger fibrillar structures. By analyzing the correlation between cell and extracellular matrix movements, we show that both the aggregation process and shaping the aggregates into fibrillar form is coupled to cell motion. We also show that the motion of non‐adjacent cells becomes more coordinated as the physical size of elastin‐containing aggregates increases. Our data imply that the formation of elastic fibers involves the concerted action and motility of multiple cells. J. Cell. Physiol. 207: 97–106, 2006.


Human Genetics | 2011

BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome

Linda M. Reis; Rebecca C. Tyler; Kala F. Schilter; Omar A. Abdul-Rahman; Jeffrey W. Innis; Beth A. Kozel; Adele Schneider; Tanya Bardakjian; Edward J. Lose; Donna M. Martin; Ulrich Broeckel; Elena V. Semina

BMP4 loss-of-function mutations and deletions have been shown to be associated with ocular, digital, and brain anomalies, but due to the paucity of these reports, the full phenotypic spectrum of human BMP4 mutations is not clear. We screened 133 patients with a variety of ocular disorders for BMP4 coding region mutations or genomic deletions. BMP4 deletions were detected in two patients: a patient affected with SHORT syndrome and a patient with anterior segment anomalies along with craniofacial dysmorphism and cognitive impairment. In addition to this, three intragenic BMP4 mutations were identified. A patient with anophthalmia, microphthalmia with sclerocornea, right-sided diaphragmatic hernia, and hydrocephalus was found to have a c.592C>T (p.R198X) nonsense mutation in BMP4. A frameshift mutation, c.171dupC (p.E58RfsX17), was identified in two half-siblings with anophthalmia/microphthalmia, discordant developmental delay/postaxial polydactyly, and poor growth as well as their unaffected mother; one affected sibling carried an additional BMP4 mutation in the second allele, c.362A>G (p.H121R). This is the first report indicating a role for BMP4 in SHORT syndrome, Axenfeld–Rieger malformation, growth delay, macrocephaly, and diaphragmatic hernia. These results significantly expand the number of reported loss-of-function mutations, further support the critical role of BMP4 in ocular development, and provide additional evidence of variable expression/non-penetrance of BMP4 mutations.


Journal of Medical Genetics | 2009

Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes

S. M. Ware; Nahed O. ElHassan; Stephen G. Kahler; Q. Zhang; Y. W. Ma; E. Miller; B. Wong; R. L. Spicer; William J. Craigen; Beth A. Kozel; Dorothy K. Grange; L. J. Wong

Background: Infantile cardiomyopathy is a genetically heterogeneous disorder with significant morbidity and mortality. Methods: This study aimed to identify the mutation present in four unrelated patients who presented as infants with isolated hypertrophic cardiomyopathy. Results: In all four, a novel mitochondrial m.8528T→C mutation was identified. This results in a change of the initiation codon in ATPase 6 to threonine and a concurrent change from a highly conserved hydrophobic amino acid, tryptophan, at position 55 of ATPase 8 to a highly basic arginine. To our knowledge, this is the first report of a mutation affecting both mitochondrial genome-encoded complex V subunit proteins. Testing of the relatives of one patient indicated that the mutation is heteroplasmic and correlated with disease. Conclusion: Mitochondrial genome sequencing should be considered in patients with infantile hypertrophic cardiomyopathy.


European Journal of Human Genetics | 2012

Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43–q44

Sandesh C.S. Nagamani; Ayelet Erez; Carolyn Bay; Anjana Pettigrew; Seema R. Lalani; Kristin Herman; Brett H. Graham; Małgorzata J.M. Nowaczyk; Monica Proud; William J. Craigen; Bobbi Hopkins; Beth A. Kozel; Katie Plunkett; Patricia Hixson; Pawel Stankiewicz; Ankita Patel; Sau Wai Cheung

Submicroscopic deletions involving chromosome 1q43–q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43–q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.


Hypertension | 2014

Williams Syndrome Predisposes to Vascular Stiffness Modified by Antihypertensive Use and Copy Number Changes in NCF1

Beth A. Kozel; Joshua R. Danback; Jessica L. Waxler; Russell H. Knutsen; Lisa de las Fuentes; György Reusz; Éva Kis; Ami B. Bhatt; Barbara R. Pober

Williams syndrome is caused by the deletion of 26 to 28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln+/− mouse suggests that affected people may also have stiff vasculature, a risk factor for stroke, myocardial infarction, and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case–control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (P<0.001), with increased stiffness observed in even the youngest children with Williams syndrome. Pulse wave velocity increased with age at comparable rates in cases and controls, and although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of antihypertensive medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with antihypertensives or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive.


Clinical Genetics | 2013

Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

Kala F. Schilter; Linda M. Reis; Adele Schneider; Tanya Bardakjian; Omar A. Abdul-Rahman; Beth A. Kozel; Holly H. Zimmerman; Ulrich Broeckel; Elena V. Semina

Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole‐genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2‐Mb duplication of 3q29 in a patient with non‐syndromic anophthalmia and an 877‐kb duplication of 11p13 (PAX6) and a 1.4‐Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases.

Collaboration


Dive into the Beth A. Kozel's collaboration.

Top Co-Authors

Avatar

Robert P. Mecham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Russell H. Knutsen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jessica E. Wagenseil

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Broekelmann

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dorothy K. Grange

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua R. Danback

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher H. Ciliberto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark D. Levin

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge