Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beth A. Rasala is active.

Publication


Featured researches published by Beth A. Rasala.


Biofuels | 2010

Biofuels from algae: challenges and potential

Michael Hannon; Javier Gimpel; Miller Tran; Beth A. Rasala; Stephen P. Mayfield

Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality.


Plant Biotechnology Journal | 2010

Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii

Beth A. Rasala; Machiko Muto; Philip A. Lee; Michal Jager; Rosa M.F. Cardoso; Craig Behnke; Peter B. Kirk; Craig A. Hokanson; Roberto Crea; Michael Mendez; Stephen P. Mayfield

Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%-3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well-expressed serum amyloid protein. All of the algal chloroplast-expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.


Proceedings of the National Academy of Sciences of the United States of America | 2006

ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division

Beth A. Rasala; Arturo V. Orjalo; Zhouxin Shen; Steven P. Briggs; Douglass J. Forbes

Nuclear pores span the nuclear envelope and act as gated aqueous channels to regulate the transport of macromolecules between the nucleus and cytoplasm, from individual proteins and RNAs to entire viral genomes. By far the largest subunit of the nuclear pore is the Nup107–160 complex, which consists of nine proteins and is critical for nuclear pore assembly. At mitosis, the Nup107–160 complex localizes to kinetochores, suggesting that it may also function in chromosome segregation. To investigate the dual roles of the Nup107–160 complex at the pore and during mitosis, we set out to identify binding partners by immunoprecipitation from both interphase and mitotic Xenopus egg extracts and mass spectrometry. ELYS, a putative transcription factor, was discovered to copurify with the Nup107–160 complex in Xenopus interphase extracts, Xenopus mitotic extracts, and human cell extracts. Indeed, a large fraction of ELYS localizes to the nuclear pore complexes of HeLa cells. Importantly, depletion of ELYS by RNAi leads to severe disruption of nuclear pores in the nuclear envelope, whereas lamin, Ran, and tubulin staining appear normal. At mitosis, ELYS targets to kinetochores, and RNAi depletion from HeLa cells leads to an increase in cytokinesis defects. Thus, we have identified an unexpected member of the nuclear pore and kinetochore that functions in both pore assembly at the nucleus and faithful cell division.


PLOS ONE | 2012

Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide

Beth A. Rasala; Philip A. Lee; Zhouxin Shen; Steven P. Briggs; Michael Mendez; Stephen P. Mayfield

Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly ‘cleaved’ at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (∼100-fold) increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.


Molecular Biology of the Cell | 2008

Capture of AT-rich Chromatin by ELYS Recruits POM121 and NDC1 to Initiate Nuclear Pore Assembly

Beth A. Rasala; Corinne Ramos; Amnon Harel; Douglass J. Forbes

Assembly of the nuclear pore, gateway to the genome, from its component subunits is a complex process. In higher eukaryotes, nuclear pore assembly begins with the binding of ELYS/MEL-28 to chromatin and recruitment of the large critical Nup107-160 pore subunit. The choreography of steps that follow is largely speculative. Here, we set out to molecularly define early steps in nuclear pore assembly, beginning with chromatin binding. Point mutation analysis indicates that pore assembly is exquisitely sensitive to the change of only two amino acids in the AT-hook motif of ELYS. The dependence on AT-rich chromatin for ELYS binding is borne out by the use of two DNA-binding antibiotics. AT-binding Distamycin A largely blocks nuclear pore assembly, whereas GC-binding Chromomycin A(3) does not. Next, we find that recruitment of vesicles containing the key integral membrane pore proteins POM121 and NDC1 to the forming nucleus is dependent on chromatin-bound ELYS/Nup107-160 complex, whereas recruitment of gp210 vesicles is not. Indeed, we reveal an interaction between the cytoplasmic domain of POM121 and the Nup107-160 complex. Our data thus suggest an order for nuclear pore assembly of 1) AT-rich chromatin sites, 2) ELYS, 3) the Nup107-160 complex, and 4) POM121- and NDC1-containing membrane vesicles and/or sheets, followed by (5) assembly of the bulk of the remaining soluble pore subunits.


Bioengineered bugs | 2011

The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics.

Beth A. Rasala; Stephen P. Mayfield

Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.


PLOS ONE | 2014

Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

Beth A. Rasala; Syh-Shiuan Chao; Matthew Pier; Daniel J. Barrera; Stephen P. Mayfield

Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization.


Molecular and Cellular Biology | 2008

Centrin 2 Localizes to the Vertebrate Nuclear Pore and Plays a Role in mRNA and Protein Export

Karen K. Resendes; Beth A. Rasala; Douglass J. Forbes

ABSTRACT Centrins in vertebrates have traditionally been associated with microtubule-nucleating centers such as the centrosome. Unexpectedly, we found centrin 2 to associate biochemically with nucleoporins, including the Xenopus laevis Nup107-160 complex, a critical subunit of the vertebrate nuclear pore in interphase and of the kinetochores and spindle poles in mitosis. Immunofluorescence of Xenopus cells and in vitro reconstituted nuclei indeed revealed centrin 2 localized at the nuclear pores. Use of the mild detergent digitonin in immunofluorescence also allowed centrin 2 to be clearly visualized at the nuclear pores of human cells. Disruption of nuclear pores using RNA interference of the pore assembly protein ELYS/MEL-28 resulted in a specific decrease of centrin 2 at the nuclear rim of HeLa cells. Functionally, excess expression of either the N- or C-terminal calcium-binding domains of human centrin 2 caused a dominant-negative effect on both mRNA and protein export, leaving protein import intact. The mRNA effect mirrors that found for the Saccharomyes cerevisiae centrin Cdc31p at the yeast nuclear pore, a role until now thought to be unique to yeast. We conclude that in vertebrates, centrin 2 interacts with major subunits of the nuclear pore, exhibits nuclear pore localization, and plays a functional role in multiple nuclear export pathways.


Molecular Biology of the Cell | 2009

Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly

Corine K. Lau; Valerie A. Delmar; Rene C. Chan; Quang Phung; Cyril Bernis; Boris Fichtman; Beth A. Rasala; Douglass J. Forbes

Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.


Molecular Biology of the Cell | 2010

Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis

Boris Fichtman; Corinne Ramos; Beth A. Rasala; Amnon Harel; Douglass J. Forbes

The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly.

Collaboration


Dive into the Beth A. Rasala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miller Tran

University of California

View shared research outputs
Top Co-Authors

Avatar

Machiko Muto

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Mendez

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Ramos

University of California

View shared research outputs
Top Co-Authors

Avatar

Craig Behnke

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Gimpel

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge