Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beth Ann Murphy is active.

Publication


Featured researches published by Beth Ann Murphy.


Nature | 2000

Identification of receptors for neuromedin U and its role in feeding

Andrew D. Howard; Ruiping Wang; Sheng-Shung Pong; Theodore N. Mellin; Alison M. Strack; Xiao-Ming Guan; Zhizhen Zeng; David L. Williams; Scott D. Feighner; Christian N. Nunes; Beth Ann Murphy; Judith N. Stair; Hong Yu; Qingping Jiang; Michelle K. Clements; Carina P. Tan; Karen Kulju McKee; Donna L. Hreniuk; Terrence P. McDonald; Kevin R. Lynch; Jilly F. Evans; Christopher P. Austin; C. Thomas Caskey; Lex H.T. Van der Ploeg; Qingyun Liu

Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species. It is widely distributed in the gut and central nervous system. Peripheral activities of NMU include stimulation of smooth muscle, increase of blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.


Annals of Surgery | 1999

Impaired Wound Contraction in Stromelysin-1–Deficient Mice

Kelli M. Bullard; Leif R. Lund; John Mudgett; Theodore N. Mellin; Thomas K. Hunt; Beth Ann Murphy; John Ronan; Zena Werb; Michael J. Banda

OBJECTIVE To determine whether the deletion of stromelysin-1, a single metalloproteinase gene product, will alter the time course and quality of dermal wound repair in mice. SUMMARY BACKGROUND DATA After dermal injury, a highly coordinated program of events is initiated by formation of a fibrin clot, followed by migration of keratinocytes, contraction of the dermis, recruitment of inflammatory macrophages, formation of granulation tissue with angiogenesis, and finally tissue remodeling. Matrix metalloproteinases are rapidly induced in the dermis and granulation tissue and at the leading edge of the epidermis in the healing wounds. METHODS Incisional and circular full-thickness wounds 2 to 10 mm were made in the dermis of stromelysin-1-deficient and wild-type mice. The wounds were analyzed for rate of cellular migration and epithelialization. The wound contraction was examined by immunohistochemical staining for alpha-smooth muscle actin and fluorescent staining for fibrillar actin. RESULTS Independent of the age of the animal, excisional wounds in stromelysin-1-deficient mice failed to contract and healed more slowly than those in wild-type mice. Cellular migration and epithelialization were unaffected in the stromelysin-1-deficient animals. The functional defect in these mice is failure of contraction during the first phase of healing because of inadequate organization of actin-rich stromal fibroblasts. CONCLUSIONS Excisional dermal wound healing is impaired in mice with a targeted deletion in the stromelysin-1 gene. Incisional wound healing is not affected. These data implicate stromelysin-1 proteolysis during early wound contraction and indicate that stromelysin-1 is crucial for the organization of a multicellular actin network.


Neuropeptides | 1998

Melanocortin mediated inhibition of feeding behavior in rats

Beth Ann Murphy; Christian N. Nunes; J.J Ronan; C.M Harper; M.J Beall; M Hanaway; A.M Fairhurst; L.H.T Van der Ploeg; D.E Maclntyre; Theodore N. Mellin

Melanocortinergic neurons are believed to play a role in the control of food intake. Melanocortin receptor agonists and antagonists modulate feeding in several mouse models of chemically and genetically induced hyperphagia. To date, little information is available describing the role of this neurological system in the control of the natural feeding cycle in genetically intact rats. To evaluate the involvement of melanocortins in spontaneous nocturnal feeding, the synthetic melanocortin receptor agonist, MTII and the antagonist, SHU9119 were administered ICV (third ventricle) alone and in combination. Dose-dependent inhibition or stimulation of food intake was observed with MTII or SHU9119, respectively. Co-injections containing equal concentrations of MTII and SHU9119 resulted in food intake that was indistinguishable from controls. Food intake patterns observed in studies in which various dose combinations of MTII and SHU9119 were co-injected are consistent with the concept that both affect feeding by acting on similar melanocortin receptors. The hypothesis that effects of melanocortins on feeding may be mediated via an NPY related pathway was tested by co-injecting MTII and NPY in a 2-h satiated food intake paradigm. MTII inhibited food intake induced by 5.0 microg hNPY in a dose dependent manner with the highest dose tested abolishing the NPY feeding response. The studies suggest that melanocortins act via specific receptors to control food intake in rats, possibly via an NPY related pathway. If similar neurochemical processes operate in humans, selectively modulating specific melanocortin receptor signaling may be an approach to the treatment of human obesity.


Rapid Communications in Mass Spectrometry | 2012

A rapid method for cross‐species quantitation of apolipoproteins A1, B48 and B100 in plasma by ultra‐performance liquid chromatography/tandem mass spectrometry

Theresa McLaughlin; Elizabeth Polizzi Somers; Alice Stefanni; Zhu Chen; Beth Ann Murphy; Kathleen K. Bierilo; Amy M. Flattery; Kenneth K. Wong; Jose Castro-Perez; Brian K. Hubbard; Thomas P. Roddy

Apolipoprotein B100 (apoB100) and apolipoprotein A1 (apoA1) are the primary protein components of low density lipoprotein (LDL) and high density lipoprotein (HDL) particles, respectively, and plasma levels of these proteins are associated with risks of cardiovascular disease. Existing apoB100 quantitation methods for animal models have been limited to affinity capture techniques such as enzyme-linked immunosorbent assay (ELISA) and Western blot which require specialized reagents for each species and in many cases are not readily available. Here we demonstrate a single translatable ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) assay that is fast and robust and can be used to measure apolipoprotein concentrations in plasma for six species. When possible, peptide sequences that are conserved across species were identified for this assay. The sample preparation is limited and can be carried out in 96-well microtiter plates and thus allows for multiplexed preparation of samples for analysis of large numbers of samples in a short time frame when combined with UPLC/MS/MS. Separation and quantitation of the tryptic peptides is carried out at 700 μL/min using a 1.7 µm core shell C18 column (2.1 × 50 mm). The chromatography is designed for the analysis of over 100 samples per day, and the UPLC run is less than 10 min. This assay is capable of supporting cardiovascular research by providing a single assay to measure critical biomarkers across multiple species without the need for antibodies, and does so in a high-throughput manner.


Journal of Medicinal Chemistry | 2010

Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists.

Charles A. Blum; Timothy M. Caldwell; Xiaozhang Zheng; Rajagopal Bakthavatchalam; Scott M. Capitosti; Harry Brielmann; Stéphane De Lombaert; Mark T. Kershaw; David J. Matson; James E. Krause; Daniel N. Cortright; Marci Crandall; William J. Martin; Beth Ann Murphy; Susan Boyce; A. Brian Jones; Glenn Mason; Wayne Rycroft; Helen Perrett; Rachael Conley; Nicola Burnaby-Davies; Bertrand L. Chenard; Kevin J. Hodgetts

The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is a nonselective cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. The design and synthesis of a series of novel TRPV1 antagonists with a variety of different 6,6-heterocyclic cores is described, and an extensive evaluation of the pharmacological and pharmacokinetic properties of a number of these compounds is reported. For example, the 1,8-naphthyridine 52 was characterized as an orally bioavailable and brain penetrant TRPV1 antagonist. In vivo, 52 fully reversed carrageenan-induced thermal hyperalgesia (CITH) in rats and dose-dependently potently reduced complete Freunds adjuvant (CFA) induced chronic inflammatory pain after oral administration.


Journal of Lipid Research | 2013

Effects of small interfering RNA-mediated hepatic glucagon receptor inhibition on lipid metabolism in db/db mice

Seongah Han; Taro E. Akiyama; Stephen F. Previs; Kithsiri Herath; Thomas P. Roddy; Kristian K. Jensen; Hong-Ping Guan; Beth Ann Murphy; Xun Shen; Walter Strapps; Brian K. Hubbard; Shirly Pinto; Cai Li; Jing Li

Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.


Journal of Lipid Research | 2013

Effects of siRNA-mediated hepatic glucagon receptor inhibition on lipid metabolism in db/db mice

Seongah Han; Taro E. Akiyama; Stephen F. Previs; Kithsiri Herath; Thomas P. Roddy; Kristian K. Jensen; Hong-Ping Guan; Beth Ann Murphy; Walter Strapps; Brian K. Hubbard; Shirly Pinto; Cai Li; Jing Li

Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.


Bioorganic & Medicinal Chemistry Letters | 2010

Pyrido[2,3-b]pyrazines, discovery of TRPV1 antagonists with reduced potential for the formation of reactive metabolites

Kevin J. Hodgetts; Charles A. Blum; Timothy M. Caldwell; Rajagopal Bakthavatchalam; Xiaozhang Zheng; Scott M. Capitosti; James E. Krause; Daniel N. Cortright; Marci Crandall; Beth Ann Murphy; Susan Boyce; A. Brian Jones; Bertrand L. Chenard

The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is a non-selective cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. During pre-clinical development, the 1,8-naphthyridine 2 demonstrated unacceptably high levels of irreversible covalent binding. Replacement of the 1,8-naphthyridine core by a pyrido[2,3-b]pyrazine led to the discovery of compound 26 which was shown to have significantly lower potential for the formation of reactive metabolites. Compound 26 was characterized as an orally bioavailable TRPV1 antagonist with moderate brain penetration. In vivo, 26 significantly attenuated carrageenan-induced thermal hyperalgesia (CITH) and dose-dependently reduced complete Freunds adjuvant (CFA)-induced chronic inflammatory pain after oral administration.


Analytical Chemistry | 2013

Use of [13C18] oleic acid and mass isotopomer distribution analysis to study synthesis of plasma triglycerides in vivo: analytical and experimental considerations.

David G. McLaren; Helene L. Cardasis; Steven J. Stout; Sheng-Ping Wang; Vivienne Mendoza; Jose Castro-Perez; Paul L. Miller; Beth Ann Murphy; Anne-Marie Cumiskey; Michele A. Cleary; Douglas G. Johns; Stephen F. Previs; Thomas P. Roddy

We have previously reported on a liquid chromatography-mass spectrometry method to determine the disposition of [(13)C18]-oleic acid following intravenous and oral administration in vivo. This approach has enabled us to study a variety of aspects of lipid metabolism including a quantitative assessment of triglyceride synthesis. Here we present a more rigorous evaluation of the constraints imposed upon the analytical method in order to generate accurate data using this stable-isotope tracer approach along with more detail on relevant analytical figures of merit including limits of quantitation, precision, and accuracy. The use of mass isotopomer distribution analysis (MIDA) to quantify plasma triglyceride synthesis is specifically highlighted, and a re-evaluation of the underlying mathematics has enabled us to present a simplified series of equations. The derivation of this MIDA model and the significance of all underlying assumptions are explored in detail, and examples are given of how it can successfully be applied to detect differences in plasma triglyceride synthesis in lean and high-fat diet fed mouse models. More work is necessary to evaluate the applicability of this approach to triglyceride stores with slower rates of turnover such as in adipose or muscle tissue; however, the present report provides investigators with the tools necessary to conduct such studies.


Journal of Medicinal Chemistry | 2017

Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors

Tim Cernak; Nathan J. Gesmundo; Kevin D. Dykstra; Yang Yu; Zhicai Wu; Zhi-Cai Shi; Petr Vachal; Donald Mark Sperbeck; Shuwen He; Beth Ann Murphy; Lisa M. Sonatore; Steven Williams; Maria Madeira; Andreas Verras; Maud Reiter; Claire Lee; James Cuff; Edward C. Sherer; Jeffrey T. Kuethe; Stephen D. Goble; Nicholas Perrotto; Shirly Pinto; Dong-Ming Shen; Ravi P. Nargund; James M. Balkovec; Robert J. DeVita; Spencer D. Dreher

Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging SNAr reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.

Collaboration


Dive into the Beth Ann Murphy's collaboration.

Researchain Logo
Decentralizing Knowledge