Beth E. Fisher
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beth E. Fisher.
The Journal of Neuroscience | 2007
Giselle M. Petzinger; John P. Walsh; Garnik Akopian; Elizabeth Hogg; Avery Abernathy; Pablo Arevalo; Patty Turnquist; Marta Vuckovic; Beth E. Fisher; Daniel M. Togasaki; Michael W. Jakowec
Studies have suggested that there are beneficial effects of exercise in patients with Parkinsons disease, but the underlying molecular mechanisms responsible for these effects are poorly understood. Studies in rodent models provide a means to examine the effects of exercise on dopaminergic neurotransmission. Using intensive treadmill exercise, we determined changes in striatal dopamine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. C57BL/6J mice were divided into four groups: (1) saline, (2) saline plus exercise, (3) MPTP, and (4) MPTP plus exercise. Exercise was started 5 d after MPTP lesioning and continued for 28 d. Treadmill running improved motor velocity in both exercise groups. All exercised animals also showed increased latency to fall (improved balance) using the accelerating rotarod compared with nonexercised mice. Using HPLC, we found no difference in striatal dopamine tissue levels between MPTP plus exercise compared with MPTP mice. There was an increase detected in saline plus exercise mice. Analyses using fast-scan cyclic voltammetry showed increased stimulus-evoked release and a decrease in decay of dopamine in the dorsal striatum of MPTP plus exercise mice only. Immunohistochemical staining analysis of striatal tyrosine hydroxylase and dopamine transporter proteins showed decreased expression in MPTP plus exercise mice compared with MPTP mice. There were no differences in mRNA transcript expression in midbrain dopaminergic neurons between these two groups. However, there was diminished transcript expression in saline plus exercise compared with saline mice. Our findings suggest that the benefits of treadmill exercise on motor performance may be accompanied by changes in dopaminergic neurotransmission that are different in the injured (MPTP-lesioned) compared with the noninjured (saline) nigrostriatal system.
Journal of Neuroscience Research | 2004
Beth E. Fisher; Giselle M. Petzinger; Kerry Nixon; Elizabeth Hogg; Samuel Bremmer; Charles K. Meshul; Michael W. Jakowec
Physical activity has been shown to be neuroprotective in lesions affecting the basal ganglia. Using a treadmill exercise paradigm, we investigated the effect of exercise on neurorestoration. The 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐lesioned mouse model provides a means to investigate the effect of exercise on neurorestoration because 30–40% of nigrostriatal dopaminergic neurons survive MPTP lesioning and may provide a template for neurorestoration to occur. MPTP‐lesioned C57 BL/6J mice were administered MPTP (four injections of 20 mg/kg free‐base, 2 hr apart) or saline and divided into the following groups: (1) saline; (2) saline + exercise; (3) MPTP; and (4) MPTP + exercise. Mice in exercise groups were run on a motorized treadmill for 30 days starting 4 days after MPTP lesioning (a period after which MPTP‐induced cell death is complete). Initially, MPTP‐lesioned + exercise mice ran at slower speeds for a shorter amount of time compared to saline + exercise mice. Both velocity and endurance improved in the MPTP + exercise group to near normal levels over the 30‐day exercise period. The expression of proteins and genes involved in basal ganglia function including the dopamine transporter (DAT), tyrosine hydroxylase (TH), and the dopamine D1 and D2 receptors, as well as alterations on glutamate immunolabeling were determined. Exercise resulted in a significant downregulation of striatal DAT in the MPTP + exercise compared to MPTP nonexercised mice and to a lesser extent in the saline + exercised mice compared to their no‐exercise counterparts. There was no significant difference in TH protein levels between MPTP and MPTP + exercise groups at the end of the study. The expression of striatal dopamine D1 and D2 receptor mRNA transcript was suppressed in the saline + exercise group; however, dopamine D2 transcript expression was increased in the MPTP + exercise mice. Immunoelectron microscopy indicated that treadmill exercise reversed the lesioned‐induced increase in nerve terminal glutamate immunolabeling seen after MPTP administration. Our data demonstrates that exercise promotes behavioral recovery in the injured brain by modulating genes and proteins important to basal ganglia function.
Lancet Neurology | 2013
Giselle M. Petzinger; Beth E. Fisher; Sarah McEwen; Jeff A. Beeler; John P. Walsh; Michael W. Jakowec
Exercise interventions in individuals with Parkinsons disease incorporate goal-based motor skill training to engage cognitive circuitry important in motor learning. With this exercise approach, physical therapy helps with learning through instruction and feedback (reinforcement) and encouragement to perform beyond self-perceived capability. Individuals with Parkinsons disease become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Aerobic exercise, regarded as important for improvement of blood flow and facilitation of neuroplasticity in elderly people, might also have a role in improvement of behavioural function in individuals with Parkinsons disease. Exercises that incorporate goal-based training and aerobic activity have the potential to improve both cognitive and automatic components of motor control in individuals with mild to moderate disease through experience-dependent neuroplasticity. Basic research in animal models of Parkinsons disease is beginning to show exercise-induced neuroplastic effects at the level of synaptic connections and circuits.
Stroke | 2016
Carolee J. Winstein; Joel Stein; Ross Arena; Barbara Bates; Leora R. Cherney; Steven C. Cramer; Frank DeRuyter; Janice J. Eng; Beth E. Fisher; Richard L. Harvey; Catherine E. Lang; Marilyn MacKay-Lyons; Kenneth J. Ottenbacher; Sue Pugh; Mathew J. Reeves; Lorie Richards; William Stiers; Richard D. Zorowitz
Purpose— The aim of this guideline is to provide a synopsis of best clinical practices in the rehabilitative care of adults recovering from stroke. Methods— Writing group members were nominated by the committee chair on the basis of their previous work in relevant topic areas and were approved by the American Heart Association (AHA) Stroke Council’s Scientific Statement Oversight Committee and the AHA’s Manuscript Oversight Committee. The panel reviewed relevant articles on adults using computerized searches of the medical literature through 2014. The evidence is organized within the context of the AHA framework and is classified according to the joint AHA/American College of Cardiology and supplementary AHA methods of classifying the level of certainty and the class and level of evidence. The document underwent extensive AHA internal and external peer review, Stroke Council Leadership review, and Scientific Statements Oversight Committee review before consideration and approval by the AHA Science Advisory and Coordinating Committee. Results— Stroke rehabilitation requires a sustained and coordinated effort from a large team, including the patient and his or her goals, family and friends, other caregivers (eg, personal care attendants), physicians, nurses, physical and occupational therapists, speech-language pathologists, recreation therapists, psychologists, nutritionists, social workers, and others. Communication and coordination among these team members are paramount in maximizing the effectiveness and efficiency of rehabilitation and underlie this entire guideline. Without communication and coordination, isolated efforts to rehabilitate the stroke survivor are unlikely to achieve their full potential. Conclusions— As systems of care evolve in response to healthcare reform efforts, postacute care and rehabilitation are often considered a costly area of care to be trimmed but without recognition of their clinical impact and ability to reduce the risk of downstream medical morbidity resulting from immobility, depression, loss of autonomy, and reduced functional independence. The provision of comprehensive rehabilitation programs with adequate resources, dose, and duration is an essential aspect of stroke care and should be a priority in these redesign efforts. (Stroke.2016;47:e98-e169. DOI: 10.1161/STR.0000000000000098.)
Movement Disorders | 2010
Giselle M. Petzinger; Beth E. Fisher; Jon-Eric Van Leeuwen; Marta Vukovic; Garnik Akopian; Charlie K. Meshul; Daniel P. Holschneider; Angelo Nacca; John P. Walsh; Michael W. Jakowec
Epidemiological and clinical trials have suggested that exercise is beneficial for patients with Parkinsons disease (PD). However, the underlying mechanisms and potential for disease modification are currently unknown. This review presents current findings from our laboratories in patients with PD and animal models. The data indicate that alterations in both dopaminergic and glutamatergic neurotransmission, induced by activity‐dependent (exercise) processes, may mitigate the cortically driven hyper‐excitability in the basal ganglia normally observed in the parkinsonian state. These insights have potential to identify novel therapeutic treatments capable of reversing or delaying disease progression in PD.
Nature Neuroscience | 2010
Shailesh S. Kantak; Katherine J. Sullivan; Beth E. Fisher; Barbara J. Knowlton; Carolee J. Winstein
Motor-skill practice drives subsequent offline activity in functionally related resting human brain networks. We investigated the manner in which offline neural networks are modulated by practice structures that affect motor-skill retention. Interference to dorsolateral-prefrontal cortex (DLPFC), but not to primary motor cortex (M1), after variable practice attenuated motor-skill retention, whereas interference to M1, but not to DLPFC, after constant practice attenuated motor-skill retention. We conclude that neural substrates of motor-memory consolidation are modulated by practice structure.
Topics in Stroke Rehabilitation | 2001
Beth E. Fisher; Katherine J. Sullivan
Abstract Over the last several years, there has been increasing recognition of the potential for central nervous system (CNS) recovery after brain damage. One commonality across the recovery and brain plasticity literature is that practice induces plastic, dynamic changes in the CNS. However, more than simply repetition, it is the manipulation of specific practice variables that appears to drive these dynamic processes in the CNS. The experimental manipulations used in the studies on neuroplasticity largely derive from the concept that in the undamaged or healthy brain neuronal connections and cortical maps are continuously remodeled by experience and by the performance of specific, intensive, and complex movements used to solve motor problems and attain goals. Intervention designed to promote recovery rather than compensation after stroke would then manipulate these same practice variables that have consistently promoted behavioral recovery and neuroplasticity in laboratory settings. Three current intervention strategies that incorporate these practice variables are reviewed. Preliminary results provide evidence that manipulation of task intensity and specificity and the sensorimotor experience of the task training are the necessary ingredients for maximizing the tremendous potential for recovery in patients with stroke.
Movement Disorders | 2010
Marta Vuckovic; Quanzheng Li; Beth E. Fisher; Angelo Nacca; Richard M. Leahy; John P. Walsh; Jogesh Mukherjee; Celia Williams; Michael W. Jakowec; Giselle M. Petzinger
The purpose of the current study was to examine changes in dopamine D2 receptor (DA‐D2R) expression within the basal ganglia of MPTP mice subjected to intensive treadmill exercise. Using Western immunoblotting analysis of synaptoneurosomes and in vivo positron emission tomography (PET) imaging employing the DA‐D2R specific ligand [18F]fallypride, we found that high intensity treadmill exercise led to an increase in striatal DA‐D2R expression that was most pronounced in MPTP compared to saline treated mice. Exercise‐induced changes in the DA‐D2R in the dopamine‐depleted basal ganglia are consistent with the potential role of this receptor in modulating medium spiny neurons (MSNs) function and behavioral recovery. Importantly, findings from this study support the rationale for using PET imaging with [18F]fallypride to examine DA‐D2R changes in individuals with Parkinsons Disease (PD) undergoing high‐intensity treadmill training.
Neuroreport | 2013
Beth E. Fisher; Quanzheng Li; Angelo Nacca; George J. Salem; Joo-Eun Song; Jeanine Yip; Jennifer S. Hui; Michael W. Jakowec; Giselle M. Petzinger
We have previously demonstrated changes in dopaminergic neurotransmission after intensive exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of Parkinson’s disease (PD), including an increase in the dopamine D2 receptor (DA-D2R), using noninvasive PET imaging with the radioligand [18F]fallypride. The purpose of this feasibility and translational study was to examine whether intensive exercise leads to similar alterations in DA-D2R expression using PET imaging with [18F]fallypride in individuals with early-stage PD. In this pilot study, four patients with early-stage PD were randomized to receive intensive exercise (treadmill training sessions three times/week for 8 weeks) or no exercise. Two healthy age-matched individuals participated in treadmill training. Alterations in the DA-D2R binding potential (BP) as a marker for receptor expression were determined using PET imaging with [18F]fallypride. Turning performance in the patients with PD as a measure of postural control and the Unified Parkinson’s Disease Rating Scale scores pre-exercise and postexercise were determined. Our data showed an exercise-induced increase in [18F]fallypride BP as well as improved postural control in patients with PD who exercised. Changes in DA-D2R BP were not observed in patients with PD who did not exercise. These results suggest that exercise can lead to neuroplasticity in dopaminergic signaling and contribute to improved function that may be task specific (postural control) in early-stage PD.
Experimental Brain Research | 2000
Carolee J. Winstein; Fay B. Horak; Beth E. Fisher
Abstract. The effects of predictability of load magnitude on anticipatory and triggered grip-force adjustments were studied as nine normal subjects used a precision grip to lift, hold, and replace an instrumented test object. Experience with a predictable stimulus has been shown to enhance magnitude scaling of triggered postural responses to different amplitudes of perturbations. However, this phenomenon, known as a central-set effect, has not been tested systematically for grip-force responses in the hand. In our study, predictability was manipulated by applying load perturbations of different magnitudes to the test object under conditions in which the upcoming load magnitude was presented repeatedly or under conditions in which the load magnitudes were presented randomly, each with two different pre-load grip conditions (unconstrained and constrained). In constrained conditions, initial grip forces were maintained near the minimum level necessary to prevent pre-loaded object slippage, while in unconstrained conditions, no initial grip force restrictions were imposed. The effect of predictable (blocked) and unpredictable (random) load presentations on scaling of anticipatory and triggered grip responses was tested by comparing the slopes of linear regressions between the imposed load and grip response magnitude. Anticipatory and triggered grip force responses were scaled to load magnitude in all conditions. However, regardless of pre-load grip force constraint, the gains (slopes) of grip responses relative to load magnitudes were greater when the magnitude of the upcoming load was predictable than when the load increase was unpredictable. In addition, a central-set effect was evidenced by the fewer number of drop trials in the predictable relative to unpredictable load conditions. Pre-load grip forces showed the greatest set effects. However, grip responses showed larger set effects, based on prediction, when pre-load grip force was constrained to lower levels. These results suggest that anticipatory processes pertaining to load magnitude permit the response gain of both voluntary and triggered rapid grip force adjustments to be set, at least partially, prior to perturbation onset. Comparison of anticipatory set effects for reactive torque and lower extremity EMG postural responses triggered by surface translation perturbations suggests a more general rule governing anticipatory processes.