Beth E. Zucconi
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beth E. Zucconi.
Journal of Biological Chemistry | 2010
Beth E. Zucconi; Jeff D. Ballin; Brandy Y. Brewer; Christina R. Ross; Jun Huang; Eric A. Toth; Gerald M. Wilson
AU-rich element RNA-binding protein 1 (AUF1) binding to AU-rich elements (AREs) in the 3′-untranslated regions of mRNAs encoding many cytokines and other regulatory proteins modulates mRNA stability, thereby influencing protein expression. AUF1-mRNA association is a dynamic paradigm directed by various cellular signals, but many features of its function remain poorly described. There are four isoforms of AUF1 that result from alternative splicing of exons 2 and 7 from a common pre-mRNA. Preliminary evidence suggests that the different isoforms have varied functional characteristics, but no detailed quantitative analysis of the properties of each isoform has been reported despite their differential expression and regulation. Using purified recombinant forms of each AUF1 protein variant, we used chemical cross-linking and gel filtration chromatography to show that each exists as a dimer in solution. We then defined the association mechanisms of each AUF1 isoform for ARE-containing RNA substrates and quantified relevant binding affinities using electrophoretic mobility shift and fluorescence anisotropy assays. Although all AUF1 isoforms generated oligomeric complexes on ARE substrates by sequential dimer association, sequences encoded by exon 2 inhibited RNA-binding affinity. By contrast, the exon 7-encoded domain enhanced RNA-dependent protein oligomerization, even permitting cooperative RNA-binding activity in some contexts. Finally, fluorescence resonance energy transfer-based assays showed that the different AUF1 isoforms remodel bound RNA substrates into divergent structures as a function of protein:RNA stoichiometry. Together, these data describe isoform-specific characteristics among AUF1 ribonucleoprotein complexes, which likely constitute a mechanistic basis for differential functions and regulation among members of this protein family.
Frontiers in Bioscience | 2011
Beth E. Zucconi; Gerald M. Wilson
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Nucleic Acids Research | 2013
Xiangyue Wu; Sandra Chesoni; Gaelle Rondeau; Christi Tempesta; Reshma Patel; Sandy Charles; Naznin Daginawala; Beth E. Zucconi; Aparna Kishor; Guangwu Xu; Yufang Shi; Mei-Ling Li; Patricia Irizarry-Barreto; John Welsh; Gerald M. Wilson; Gary Brewer
The RNA-binding protein AUF1 binds AU-rich elements in 3′-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulation may be widespread across the transcriptome. Here, we identified mRNA targets of AUF1 from a complex pool of cellular mRNAs and examined a subset of these mRNAs to explore the links between RNA binding and mRNA degradation for both AUF1 and Argonaute 2 (AGO2), which is an essential effector of microRNA-induced gene silencing. Depending on the specific mRNA examined, AUF1 and AGO2 binding is proportional/cooperative, reciprocal/competitive or independent. For most mRNAs in which AUF1 affects their decay rates, mRNA degradation requires AGO2. Thus, AUF1 and AGO2 present mRNA-specific allosteric binding relationships for co-regulation of mRNA degradation.
Journal of Biological Chemistry | 2012
Vishram Kedar; Beth E. Zucconi; Gerald M. Wilson; Perry J. Blackshear
Background: Tristetraprolin (TTP) and related proteins can bind to AU-rich elements in target mRNAs and promote their decay. Results: Certain AUF1 isoforms bound directly to TTP proteins and increased their affinity for RNA. Conclusion: Some AUF1 isoforms can act as “co-activators” of TTP protein binding to target mRNAs. Significance: Co-activation of TTP-mediated mRNA decay may modulate post-transcriptional gene expression. Tristetraprolin (TTP) is the prototype of a family of CCCH tandem zinc finger proteins that can bind to AU-rich elements in mRNAs and promote their decay. TTP binds to mRNA through its central tandem zinc finger domain; it then promotes mRNA deadenylation, considered to be the rate-limiting step in eukaryotic mRNA decay. We found that TTP and its related family members could bind to certain isoforms of another AU-rich element-binding protein, HNRNPD/AUF1, as well as a related protein, laAUF1. The interaction domain within AUF1p45 appeared to be a C-terminal “GY” region, and the interaction domain within TTP was the tandem zinc finger domain. Surprisingly, binding of AUF1p45 to TTP occurred even with TTP mutants that lacked RNA binding activity. In cell extracts, binding of AUF1p45 to TTP potentiated TTP binding to ARE-containing RNA probes, as determined by RNA gel shift assays; AUF1p45 did not bind to the RNA probes under these conditions. Using purified, recombinant proteins and a synthetic RNA target in FRET assays, we demonstrated that AUF1p45, but not AUF1p37, increased TTP binding affinity for RNA ∼5-fold. These data suggest that certain isoforms of AUF1 can serve as “co-activators” of TTP family protein binding to RNA. The results raise interesting questions about the ability of AUF1 isoforms to regulate the mRNA binding and decay-promoting activities of TTP and its family members as well as the ability of AUF1 proteins to serve as possible physical links between TTP and other mRNA decay proteins and structures.
Genes & Development | 2015
Je-Hyun Yoon; Myung Hyun Jo; Elizabeth J.F. White; Supriyo De; Markus Hafner; Beth E. Zucconi; Kotb Abdelmohsen; Jennifer L. Martindale; Xiaoling Yang; William H. Wood; Yu Mi Shin; Ji-Joon Song; Thomas Tuschl; Kevin G. Becker; Gerald M. Wilson; Sungchul Hohng; Myriam Gorospe
Eukaryotic gene expression is tightly regulated post-transcriptionally by RNA-binding proteins (RBPs) and microRNAs. The RBP AU-rich-binding factor 1 (AUF1) isoform p37 was found to have high affinity for the microRNA let-7b in vitro (Kd = ∼ 6 nM) in cells. Ribonucleoprotein immunoprecipitation, in vitro association, and single-molecule-binding analyses revealed that AUF1 promoted let-7b loading onto Argonaute 2 (AGO2), the catalytic component of the RNA-induced silencing complex (RISC). In turn, AGO2-let-7 triggered target mRNA decay. Our findings uncover a novel mechanism by which AUF1 binding and transfer of microRNA let-7 to AGO2 facilitates let-7-elicited gene silencing.
Journal of Biological Chemistry | 2015
Michael R. White; M. Mohsin Khan; Daniel Deredge; Christina R. Ross; Royston Quintyn; Beth E. Zucconi; Vicki H. Wysocki; Patrick L. Wintrode; Gerald M. Wilson; Elsa D. Garcin
DOI 10.1074/jbc.A114.618165 A dimer interface mutation in glyceraldehyde 3-phosphate dehydrogenase regulates its binding to AU-rich RNA. Michael R. White, Mohd M. Khan, Daniel Deredge, Christina R. Ross, Royston Quintyn, Beth E. Zucconi, Vicki H. Wysocki, Patrick L. Wintrode, Gerald M. Wilson, and Elsa D. Garcin PAGE 1780: The charge state distributions shown for the mass spectra peaks in Fig. 7B were not correct. The correct charge state distributions are shown in the revised Fig. 7B. This correction does not affect the results or conclusions of this work. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 290, NO. 7, p. 4129, February 13, 2015
Biochemistry | 2016
Beth E. Zucconi; Birgit Luef; Wei Xu; Ryan A. Henry; Ilana M. Nodelman; Gregory D. Bowman; Andrew J. Andrews; Philip A. Cole
The histone acetyltransferase (HAT) enzymes p300 and CBP are closely related paralogs that serve as transcriptional coactivators and have been found to be dysregulated in cancer and other diseases. p300/CBP is a multidomain protein and possesses a highly conserved bromodomain that has been shown to bind acetylated Lys residues in both proteins and various small molecules, including I-CBP112 and CBP30. Here we show that the ligand I-CBP112 can stimulate nucleosome acetylation up to 3-fold while CBP30 does not. Activation of p300/CBP by I-CBP112 is not observed with the isolated histone H3 substrate but requires a nucleosome substrate. I-CBP112 does not impact nucleosome acetylation by the isolated p300 HAT domain, and the effects of I-CBP112 on p300/CBP can be neutralized by CBP30, suggesting that I-CBP112 likely allosterically activates p300/CBP through bromodomain interactions. Using mass spectrometry and Western blots, we have found that I-CBP112 particularly stimulates acetylation of Lys18 of histone H3 (H3K18) in nucleosomes, an established in vivo site of p300/CBP. In addition, we show that I-CBP112 enhances H3K18 acetylation in acute leukemia and prostate cancer cells in a concentration range commensurate with its antiproliferative effects. Our findings extend the known pharmacology of bromodomain ligands in the regulation of p300/CBP and suggest a novel approach to modulating histone acetylation in cancer.
Molecular Microbiology | 2015
Melissa L. Wells; Onica L. Washington; Stephanie N. Hicks; Clarissa J. Nobile; Nairi Hartooni; Gerald M. Wilson; Beth E. Zucconi; Weichun Huang; Leping Li; David C. Fargo; Perry J. Blackshear
Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins bind to AU‐rich regions in target mRNAs, leading to their deadenylation and decay. Family members in Saccharomyces cerevisiae influence iron metabolism, whereas the single protein expressed in Schizosaccharomyces pombe, Zfs1, regulates cell–cell interactions. In the human pathogen Candida albicans, deep sequencing of mutants lacking the orthologous protein, Zfs1, revealed significant increases (> 1.5‐fold) in 156 transcripts. Of these, 113 (72%) contained at least one predicted TTP family member binding site in their 3′UTR, compared with only 3 of 56 (5%) down‐regulated transcripts. The zfs1Δ/Δ mutant was resistant to 3‐amino‐1,2,4‐triazole, perhaps because of increased expression of the potential target transcript encoded by HIS3. Sequences of the proteins encoded by the putative Zfs1 targets were highly conserved among other species within the fungal CTG clade, while the predicted Zfs1 binding sites in these mRNAs often ‘disappeared’ with increasing evolutionary distance from the parental species. C. albicans Zfs1 bound to the ideal mammalian TTP binding site with high affinity, and Zfs1 was associated with target transcripts after co‐immunoprecipitation. Thus, the biochemical activities of these proteins in fungi are highly conserved, but Zfs1‐like proteins may target different transcripts in each species.
Journal of Biological Chemistry | 2013
Beth E. Zucconi; Gerald M. Wilson
Background: AUF1 post-transcriptionally regulates mRNA targets. Results: Short AU-rich sequences nucleate AUF1 ribonucleoproteins but require non-ionic contacts with flanking RNA to stabilize complexes and manipulate local RNA structure. Conclusion: AUF1 uses several molecular determinants to bind and remodel RNA targets. Significance: This model explains AUF1 interactome diversity and predicts allosteric effects on protein and microRNA trans-factor binding to proximal sites. AU-rich element RNA-binding protein 1 (AUF1) regulates the stability and/or translational efficiency of diverse mRNA targets, including many encoding products controlling the cell cycle, apoptosis, and inflammation by associating with AU-rich elements residing in their 3′-untranslated regions. Previous biochemical studies showed that optimal AUF1 binding requires 33–34 nucleotides with a strong preference for U-rich RNA despite observations that few AUF1-associated cellular mRNAs contain such extended U-rich domains. Using the smallest AUF1 isoform (p37AUF1) as a model, we employed fluorescence anisotropy-based approaches to define thermodynamic parameters describing AUF1 ribonucleoprotein (RNP) complex formation across a panel of RNA substrates. These data demonstrated that 15 nucleotides of AU-rich sequence were sufficient to nucleate high affinity p37AUF1 RNP complexes within a larger RNA context. In particular, p37AUF1 binding to short AU-rich RNA targets was significantly stabilized by interactions with a 3′-purine residue and largely base-independent but non-ionic contacts 5′ of the AU-rich site. RNP stabilization by the upstream RNA domain was associated with an enhanced negative change in heat capacity consistent with conformational changes in protein and/or RNA components, and fluorescence resonance energy transfer-based assays demonstrated that these contacts were required for p37AUF1 to remodel local RNA structure. Finally, reporter mRNAs containing minimal high affinity p37AUF1 target sequences associated with AUF1 and were destabilized in a p37AUF1-dependent manner in cells. These findings provide a mechanistic explanation for the diverse population of AUF1 target mRNAs but also suggest how AUF1 binding could regulate protein and/or microRNA binding events at adjacent sites.
Mediterranean Journal of Hematology and Infectious Diseases | 2015
Elahe Bordbar; Mehdi Taghipour; Beth E. Zucconi
Objective Different indices and formulas of CBC parameters have been suggested as indicators of early stage screenings to detect couples with β-thalassemia minor (BTMi). In this study, we evaluated the accuracy of five previous published formulas and compared them to our new formula (│80-MCV│×│27-MCH│) in screening of β-thalassemia. Methods All couples in the premarital β-thalassemia screening program of Roodbar, Iran, for whom molecular analysis had been done, were selected during two years. The red blood cell parameters were applied to each formula, and a ROC curve was plotted for each one to check its discriminative effectiveness in β-thalassemia detection. Result None of the studied indices and formulas demonstrated 100% precision. However, we found that the Shine–Lal formula and our formula had the highest sensitivity in identifying BTMi individuals. The highest specificity belonged to our formula and Sirdah formula. Conclusion Previous studies reported different sensitivities and specificities for the formulas. This can be attributed to different kinds of HBB gene mutations in various populations. Undoubtedly, physicians in different areas should evaluate the accuracy of published formulas for their own populations in the discrimination of BTMi from other causes of microcytic hypochromic anemia.