Beth Padnos
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beth Padnos.
Neurotoxicology | 2009
Robert C. MacPhail; J. Brooks; Deborah L. Hunter; Beth Padnos; T.D. Irons; Stephanie Padilla
The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10-20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
Reproductive Toxicology | 2012
Stephanie Padilla; D. Corum; Beth Padnos; Deborah L. Hunter; Andrew L. Beam; Keith A. Houck; Nisha S. Sipes; Nicole C. Kleinstreuer; Thomas B. Knudsen; David J. Dix; David M. Reif
Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental toxicity. All exposures were by immersion from 6-8 h post fertilization (hpf) to 5 days post fertilization (dpf); nominal concentration range of 1 nM-80 μM. On 6 dpf larvae were assessed for death and overt structural defects. Results revealed that the majority (62%) of chemicals were toxic to the developing zebrafish; both toxicity incidence and potency was correlated with chemical class and hydrophobicity (logP); and inter-and intra-plate replicates showed good agreement. The zebrafish embryo screen, by providing an integrated model of the developing vertebrate, compliments the ToxCast assay portfolio and has the potential to provide information relative to overt and organismal toxicity.
Psychopharmacology | 1997
Philip J. Bushnell; Wendy M. Oshiro; Beth Padnos
Abstract Central cholinergic and adrenergic pathways support the attentional processes necessary for detecting and reporting temporally unpredictable stimuli. To assess the functional effects of pharmacological manipulations of these pathways, male Long-Evans rats performed a two-choice, discrete-trial signal-detection task in which food was provided for pressing one lever after presentation of a signal (a 300-ms light flash), and for pressing a second lever at the end of a trial lacking a signal. Seven signal intensities were presented during each 1-h session in a pseudo-random order across three 100-trial blocks. After acquisition of a stable performance baseline, the acute effects of chlordiazepoxide (0, 3, 5, 8 mg/kg IP), pilocarpine (0, 1.0, 1.8, 3.0 mg/kg SC), scopolamine 0, 0.030, 0.056, 0.100 mg/kg SC), nicotine (0, 0.08, 0.25, 0.75 mg/kg SC), mecamylamine (0, 1.8, 3.0, 5.6 mg/kg IP), clonidine (0, 0.003, 0.010, 0.030 mg/kg SC), and idazoxan (0, 1, 3, 10 mg/kg SC) were assessed. Five measures of performance were analyzed: response failures; the proportion of “hits” [P(hit): the proportion of correct responses on signal trials]; the proportion of “false alarms” [P(fa): the proportion of incorrect responses on non-signal trials]; and response times (RT) for hits and for correct rejections. All drugs which slowed responding affected RT for hits and correct rejections equivalently, suggesting little or no influence of motor slowing on choice accuracy. Chlordiazepoxide reduced P(hit) at low signal intensities only, without affecting P(fa) or RT, consistent with sensory impairment (reduced visual sensitivity). All other drugs except nicotine reduced P(hit) at high signal intensities preferentially, suggesting a non-visual source of the impairment. Scopolamine, mecamylamine and clonidine affected both P(hit) and P(fa); pilocarpine and idazoxan reduced P(hit) without affecting P(fa). Nicotine at 0.75 mg/kg decreased P(hit) in the first block of trials; at 0.08 mg/kg it increased P(hit) in the second block; no dose affected P(fa). RTs were increased by pilocarpine, scopolamine, mecamylamine and clonidine, but not by nicotine or idazoxan. The data suggest that drugs which reduce cholinergic or adrenergic tone (scopolamine, mecamylamine and clonidine) impair sustained attention by decreasing the detection of signals and by increasing the false alarm rate, whereas drugs which elevate cholinergic or adrenergic tone (pilocarpine, nicotine and idazoxan) decrease attention by impairing detection of signals without affecting the false alarm rate. In contrast, the GABA-facilitating drug chlordiazepoxide appeared to affect visual thresholds rather than attention.
Neurotoxicology and Teratology | 2011
Stephanie Padilla; Deborah L. Hunter; Beth Padnos; S Frady; Robert C. MacPhail
The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradigm simultaneously tests individual larval zebrafish under both light and dark conditions in a 96-well plate using a video tracking system. We have found that many variables affect the level or pattern of locomotor activity, including age of the larvae, size of the well, and the presence of malformations. Some other variables, however, do not appear to affect larval behavior including type of rearing solution (10% Hanks vs. 1:3 Danieau vs 60 mg/kg Instant Ocean vs 1× and 1:10× EPA Moderately Hard Water). Zebrafish larval behavior using a microtiter plate format may be an ideal endpoint for screening developmentally neurotoxic chemicals, but it is imperative that many test variables be carefully specified and controlled.
Journal of Pharmacological and Toxicological Methods | 2002
Christopher J. Gordon; Earl Puckett; Beth Padnos
INTRODUCTION Measurement of tail skin temperature (T(sk)) of the rat can provide important information on mechanisms pertaining to physiology, pharmacology, and toxicology. T(sk) is largely under control of peripheral vascular tone, which is also sensitive to most experimental manipulations such as handling and restraint. Hence, it is extremely difficult to acquire long-term measurements of T(sk) that are free of artifacts from experimental manipulation. The purpose of this study is to demonstrate the utility of a radiotelemetric probe to provide continuous, long-term measurements of T(sk) in undisturbed rats. METHODS A telemetry probe is placed on the base of the tail and secured with a protective guard to prevent the rat from chewing on the probe. T(sk) is continuously monitored with standard radiotelemetric software and computer technology. Core temperature (T(c)) is monitored in duplicate sets of rats at the same time but the current system does not allow for simultaneous measurement of T(sk) and T(c) from the same animal. Rats were subjected to a variety of experimental manipulations to demonstrate the utility of the probe. RESULTS/DISCUSSION A marked increase in T(sk) was seen during the transition from light to dark phase, reflecting an increase in heat loss to lower T(c); a decrease in T(sk) during the development of endotoxin-induced fever, reflecting a reduction in heat loss to facilitate an elevation in T(c); an increase in T(sk) following exposure to the organophosphate insecticide chlorpyrifos, reflecting an increase in heat loss to facilitate a hypothermia response; and a direct effect of increasing ambient temperature on T(sk). The probe is relatively inexpensive and is used with no surgery and provides long-term measurement (e.g., >24 h) of T(sk) in unrestrained rats.
Reproductive Toxicology | 2012
John Cowden; Beth Padnos; Deborah L. Hunter; Robert C. MacPhail; Karl F. Jensen; Stephanie Padilla
Given the minimal developmental neurotoxicity data available for the large number of new and existing chemicals, there is a critical need for alternative methods to identify and prioritize chemicals for further testing. We outline a developmental neurotoxicity screening approach using zebrafish embryos. Embryos were exposed to nominal concentrations of either valproate or ethanol then examined for lethality, malformation, nervous system structure and locomotor activity. Developmental valproate exposure caused locomotor activity changes at concentrations that did not result in malformations and showed a concentration-dependent decrease in retino-tectal projection area in the optic tectum. Developmental ethanol exposure also affected retino-tectal projection area at concentrations below those concentrations causing malformations. As both valproate and ethanol are known human developmental neurotoxicants, these results add to the growing body of evidence showing the potential utility of zebrafish in screening compounds for mammalian developmental neurotoxicity.
Life Sciences | 2003
Christopher J. Gordon; Beth M. McMahon; Elliott Richelson; Beth Padnos; Laurence M. Katz
The potential use of hypothermia as a therapeutic treatment for stroke and other pathological insults has prompted the search for drugs that can lower core temperature. Ideally, a drug is needed that reduces the set-point for control of core temperature (T(c)) and thereby induces a regulated reduction in T(c). To this end, a neurotensin analog (NT77) that crosses the blood brain barrier and induces hypothermia was assessed for its effects on the set-point for temperature regulation in the Sprague-Dawley rat by measuring behavioral and autonomic thermoregulatory responses. Following surgical implanation of radiotransmitters to monitor T(c), rats were placed in a temperature gradient and allowed to select from a range of ambient temperatures (T(a)) while T(c) was monitored by radiotelemetry. There was an abrupt decrease in selected T(a) from 29 to 16 degrees C and a concomitant reduction in T(c) from 37.4 to 34.0 degrees C 1 hr after IP injection of 5.0 mg/kg NT77. Selected T(a) and T(c) then recovered to control levels by 1.5 hr and 4 hr, respectively. Oxygen consumption (M) and heat loss (H) were measured in telemetered rats housed in a direct calorimeter maintained at a T(a) of 23.5 degrees C. Injection of NT77 initially led to a reduction in M, little change in H, and marked decrease in T(c). H initially rose but decreased around the time of the maximal decrease in T(c). Overall, NT77 appears to induce a regulated hypothermic response because the decrease in T(c) was preceded by a reduction in heat production, no change in heat loss, and preference for cold T(a)s. Inducing a regulated hypothermic response with drugs such as NT77 may be an important therapy for ischemic disease and other insults.
Toxicology | 2000
Christopher J. Gordon; Beth Padnos
Organophosphate (OP) pesticides are likely to alter the regulation of blood pressure (BP) because (i) BP control centers in the brain stem utilize cholinergic synapses and (ii) the irreversible inhibition of acetylcholinesterase activity by OPs causes cholinergic stimulation in the CNS. This study used radiotelemetric techniques to monitor systolic (S), diastolic (D), mean (M) BP, pulse pressure (systolic-diastolic), heart rate (HR), core temperature (T(c)), and motor activity in male Long-Evans rats treated with the OP pesticide chlorpyrifos (CHP) at doses of 0, 5, 10, and 25 mg/kg (p.o.) at 15:00 h 10 and 25 mg/kg CHP led to parallel elevations in S-BP, M-BP, and D-BP within 2 h after dosing. BP increased 15-20 mmHg above controls and increases persisted throughout the night and into the next day. HR decreased slightly in rats administered 25 but not 10 mg/kg CHP. T(c) was reduced by treatment with 25 mg/kg CHP and then increased above controls the next day. Motor activity was reduced by treatment with 25 but not 10 mg/kg CHP. Pulse pressure was elevated by 2-4 mmHg for 40 h after exposure to 10 and 25 mg/kg CHP. The increase in BP without an increase in HR suggests that CHP increases total peripheral resistance and may alter the baroreflex control of BP. Cholinergic stimulation of the CNS may explain the initial effects of CHP on BP; however, the persistent elevation suggests an involvement of neurohumoral pressor pathways.
Toxicology | 2002
Christopher J. Gordon; Beth Padnos
Administration of the organophosphate pesticide chlorpyrifos (CHP) to the male rat at a dose of 25-80 mg/kg (p.o.) results in hypothermia followed by a delayed fever lasting for several days. These are high doses of CHP that cause marked cholinergic stimulation. It is important to understand if chronic exposure to CHP would evoke changes in thermoregulation that are comparable to the acute administration. Male rats of the Long-Evans strain were subjected to dietary treatment of 0, 1, or 5 mg/(kg day) CHP for 6 months. A limited amount of food was given per day to maintain body weight at 350 g. The constant body weight allowed for the regulation of a consistent dosage of CHP per kg body weight throughout the feeding period. Core temperature (T(a)) and motor activity (MA) were monitored by radio telemetric transmitters implanted in the abdominal cavity. After 5 months of treatment, T(c) and MA were monitored in undisturbed animals for 96 h. CHP at 5 mg/(kg day) led to a slight elevation in T(c) without affecting MA. The rats were then administered a challenge dose of CHP (30 mg/kg, p.o.) while T(c) and MA were monitored. Rats fed the 1 and 5 mg/kg CHP diets showed a significantly greater hypothermic response and reduction in MA following CHP challenge compared to controls. The restricted feeding schedule resulted in marked changes in the pattern of the circadian rhythm. Therefore, in another study, rats were treated ad libitum for 17 days with a CHP diet that resulted in a dosage of 7 mg CHP/(mg day). There was a significant increase in T(c) during the daytime but not during the night throughout most of the treatment period. Overall, chronic CHP was associated with a slight but significant elevation in T(c) and greater hypothermic response to a CHP challenge. This latter finding was unexpected and suggests that chronic exposure to CHP sensitizes the rats thermoregulatory response to acute CHP exposure.
Journal of Thermal Biology | 2000
Christopher J. Gordon; Peggy Becker; Paul M. Killough; Beth Padnos