Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bethan E. Phillips is active.

Publication


Featured researches published by Bethan E. Phillips.


The Journal of Physiology | 2013

Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism

Daniel J. Wilkinson; T. Hossain; Bethan E. Phillips; Hannah Crossland; John Williams; Paul T. Loughna; Tyler A. Churchward-Venne; Leigh Breen; Stuart M. Phillips; Timothy Etheridge; J. A. Rathmacher; Kenneth Smith; Nate Szewczyk; Philip J. Atherton

•  The branched‐chain amino acid (BCAA) leucine acts as both a ‘trigger’ for the initiation of protein synthesis, and as a substrate for newly synthesized protein. •  As a BCAA, leucine can be metabolized within skeletal muscle, leaving open the possibility that leucine metabolites might possess anabolic properties. •  One metabolite in particular, β‐hydroxy‐β‐methylbutyrate (HMB), has shown positive effects on lean body mass and strength following exercise, and in disease‐related muscle wasting, yet its impact on acute human muscle protein turnover is undefined. •  We report here that HMB stimulates muscle protein synthesis to a similar extent to leucine. HMB was also found to decrease muscle protein breakdown. •  Our observation that HMB enhances muscle protein anabolism may partly (or wholly) underlie its pre‐defined anabolic/anti‐catabolic supplemental efficacy in humans.


PLOS Genetics | 2013

Molecular Networks of Human Muscle Adaptation to Exercise and Age

Bethan E. Phillips; John Williams; Thomas Gustafsson; Claude Bouchard; Tuomo Rankinen; Steen Knudsen; Kenneth Smith; James A. Timmons; Philip J. Atherton

Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ∼580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ∼500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity.


Current Opinion in Clinical Nutrition and Metabolic Care | 2012

Regulation of muscle protein synthesis in humans.

Bethan E. Phillips; Philip J. Atherton

Purpose of reviewInvestigations into the regulation of muscle protein synthesis (MPS) are a cornerstone of understanding the control of muscle mass. Rates of MPS are finely tuned according to levels of activity, nutrient availability and health status. For instance, rates of MPS are positively regulated by exercise and nutrition, and negatively regulated by inactivity (e.g. disuse), ageing (i.e. sarcopenia) and in muscle-wasting related diseases (e.g. cancer). Recent findingsSkeletal muscles display a high degree of intrinsic regulation. Increases in MPS after exercise occur independently of the systemic milieu for example growth hormone/testosterone concentrations. In the absence of exercise, increases in MPS after feeding are of finite duration despite enduring precursor availability; that is muscles can sense they are ‘full’. Intriguingly, exercise delays this ‘muscle-full’ response to allow for building and repair. In contrast, muscle-wasting conditions exhibit a premature ‘muscle-full’ response to nutrition and exercise (i.e. anabolic resistance), which may cause atrophy. Observations of ‘dissociations’ between MPS and anabolic signalling pathways have cast doubt on how much we understand of the molecular regulation of human MPS. SummaryAnabolic and anticatabolic interventions in health and disease should be aimed at manipulating the ‘muscle-full’ set point to maximize muscle maintenance/hypertrophy.


The American Journal of Clinical Nutrition | 2012

Effect of tumor burden and subsequent surgical resection on skeletal muscle mass and protein turnover in colorectal cancer patients

John Williams; Bethan E. Phillips; Kenneth Smith; Philip J. Atherton; Debbie Rankin; Anna Selby; Sarah Liptrot; Jonathan N. Lund; Mike Larvin; Michael J. Rennie

BACKGROUND Cachexia is a consequence of tumor burden caused by ill-defined catabolic alterations in muscle protein turnover. OBJECTIVE We aimed to explore the effect of tumor burden and resection on muscle protein turnover in patients with nonmetastatic colorectal cancer (CRC), which is a surgically curable tumor that induces cachexia. DESIGN We recruited the following 2 groups: patients with CRC [n = 13; mean ± SEM age: 66 ± 3 y; BMI (in kg/m(2)): 27.6 ± 1.1] and matched healthy controls (n = 8; age: 71 ± 2 y; BMI: 26.2 ± 1). Control subjects underwent a single study, whereas CRC patients were studied twice before and ~6 wk after surgical resection to assess muscle protein synthesis (MPS), muscle protein breakdown (MPB), and muscle mass by using dual-energy X-ray absorptiometry. RESULTS Leg muscle mass was lower in CRC patients than in control subjects (6290 ± 456 compared with 7839 ± 617 g; P < 0.05) and had an additional decline after surgery (5840 ± 456 g; P < 0.001). Although postabsorptive MPS was unaffected, catabolic changes with tumor burden included the complete blunting of postprandial MPS (0.038 ± 0.004%/h in the CRC group compared with 0.065 ± 0.006%/h in the control group; P < 0.01) and a trend toward increased MPB under postabsorptive conditions (P = 0.09). Although surgical resection exacerbated muscle atrophy (-7.2%), catabolic changes in protein metabolism had normalized 6 wk after surgery. The recovery in postprandial MPS after surgery was inversely related to the degree of muscle atrophy (r = 0.65, P < 0.01). CONCLUSIONS CRC patients display reduced postprandial MPS and a trend toward increased MPB, and tumor resection reverses these derangements. With no effective treatment of cancer cachexia, future therapies directed at preserving muscle mass should concentrate on alleviating proteolysis and enhancing anabolic responses to nutrition before surgery while augmenting muscle anabolism after resection.


Genome Biology | 2015

A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status

Sanjana Sood; Iain J. Gallagher; Katie Lunnon; Eric Rullman; Aoife Keohane; Hannah Crossland; Bethan E. Phillips; Tommy Cederholm; Thomas E. Jensen; Luc J. C. van Loon; Lars Lannfelt; William E. Kraus; Philip J. Atherton; Robert Howard; Thomas Gustafsson; Angela Hodges; James A. Timmons

BackgroundDiagnostics of the human ageing process may help predict future healthcare needs or guide preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects who reached 65 years of age in good health.ResultsOne hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain tissue (n = 594, AUC = 0.83–0.96) and thus represents a biomarker for biological age. Using the Uppsala Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated with better renal function at age 82 years and longevity. The gene score is ‘up-regulated’ in healthy human hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched dementia case–control data sets (n = 717) the healthy controls have significantly greater gene scores than those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease (AD) RNA ‘disease signature’, the healthy ageing RNA classifier is diagnostic for AD.ConclusionsWe identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.


American Journal of Physiology-endocrinology and Metabolism | 2015

Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women, at rest and after exercise

Syed S.I. Bukhari; Bethan E. Phillips; Daniel J. Wilkinson; Marie C. Limb; Debbie Rankin; William Kyle Mitchell; Hisamine Kobayashi; Paul L. Greenhaff; Kenneth Smith; Philip J. Atherton

Dysregulated anabolic responses to nutrition/exercise may contribute to sarcopenia; however, these characteristics are poorly defined in female populations. We determined the effects of two feeding regimes in older women (66 ± 2.5 yr; n = 8/group): bolus whey protein (WP-20 g) or novel low-dose leucine-enriched essential amino acids (EAA) [LEAA; 3 g (40% leucine)]. Using [(13)C6]phenylalanine infusions, we quantified muscle (MPS) and albumin (APS) protein synthesis at baseline and in response to both feeding (FED) and feeding plus exercise (FED-EX; 6 × 8 knee extensions at 75% 1-repetition maximum). We also quantified plasma insulin/AA concentrations, whole leg (LBF)/muscle microvascular blood flow (MBF), and muscle anabolic signaling by phosphoimmunoblotting. Plasma insulinemia and EAA/aemia were markedly greater after WP than LEAA (P < 0.001). Neither LEAA nor WP modified LBF in response to FED or FED-EX, whereas MBF increased to a similar extent in both groups only after FED-EX (P < 0.05). In response to FED, both WP and LEAA equally stimulated MPS 0-2 h (P < 0.05), abating thereafter (0-4 h, P > 0.05). In contrast, after FED-EX, MPS increased at 0-2 h and remained elevated at 0-4 h (P < 0.05) with both WP and LEAA. No anabolic signals quantifiably increased after FED, but p70 S6K1 Thr(389) increased after FED-EX (2 h, P < 0.05). APS increased similarly after WP and LEAA. Older women remain subtly responsive to nutrition ± exercise. Intriguingly though, bolus WP offers no trophic advantage over LEAA.


Physiological Reports | 2013

Development of a new Sonovue™ contrast‐enhanced ultrasound approach reveals temporal and age‐related features of muscle microvascular responses to feeding

William Kyle Mitchell; Bethan E. Phillips; John Williams; Debbie Rankin; Kenneth Smith; Jonathan N. Lund; Philip J. Atherton

Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast‐enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (~20 years) and older (~70 years) men. Intensity‐time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real‐time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme‐linked immunosorbent assay. Steady‐state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age‐related declines in muscle glucose disposal, protein anabolism, and muscle mass.


Acta Physiologica | 2016

Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise

Matthew S. Brook; Daniel J. Wilkinson; Bethan E. Phillips; Joaquín Pérez-Schindler; Andrew Philp; Kenneth Smith; Philip J. Atherton

Skeletal muscles comprise a substantial portion of whole body mass and are integral for locomotion and metabolic health. Increasing age is associated with declines in both muscle mass and function (e.g. strength‐related performance, power) with declines in muscle function quantitatively outweighing those in muscle volume. The mechanisms behind these declines are multi‐faceted involving both intrinsic age‐related metabolic dysregulation and environmental influences such as nutritional and physical activity. Ageing is associated with a degree of ‘anabolic resistance’ to these key environmental inputs, which likely accelerates the intrinsic processes driving ageing. On this basis, strategies to sensitize and/or promote anabolic responses to nutrition and physical activity are likely to be imperative in alleviating the progression and trajectory of sarcopenia. Both resistance‐ and aerobic‐type exercises are likely to confer functional and health benefits in older age, and a clutch of research suggests that enhancement of anabolic responsiveness to exercise and/or nutrition may be achieved by optimizing modifications of muscle‐loading paradigms (workload, volume, blood flow restriction) or nutritional support (e.g. essential amino acid/leucine) patterns. Nonetheless, more work is needed in which a more holistic view in ageing studies is taken into account. This should include improved characterization of older study recruits, that is physical activity/nutritional behaviours, to limit confounding variables influencing whether findings are attributable to age, or other environmental influences. Nonetheless, on balance, ageing is associated with declines in muscle mass and function and a partially related decline in aerobic capacity. There is also good evidence that metabolic flexibility is impaired in older age.


Journal of Applied Physiology | 2012

Resistance exercise training improves age-related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to feeding and exercise

Bethan E. Phillips; John Williams; Philip J. Atherton; Kenneth Smith; Wulf Hildebrandt; Debbie Rankin; Paul L. Greenhaff; Ian A. Macdonald; Michael J. Rennie

One manifestation of age-related declines in vascular function is reduced peripheral (limb) blood flow and vascular conduction at rest and in response to vasodilatory stimuli such as exercise and feeding. Since, even in older age, resistance exercise training (RET) represents an efficacious strategy for increasing muscle mass and function, we hypothesized that likewise RET would improve age-related declines in leg blood flow (LBF) and vascular conductance (LVC). We studied three mixed-sex age groups (young: 18-28 yr, n = 14; middle aged: 45-55 yr, n = 20; older: 65-75 yr, n = 17) before and after 20 wk of whole body RET in the postabsorptive state (BASAL) and after unilateral leg extensions (6 × 8 repetitions; 75% 1 repetition maximum) followed by intermittent mixed-nutrient liquid feeds (∼6.5 kJ·kg(-1)·30 min(-1)), which allowed us to discern the acute effects of feeding (nonexercised leg; FED) and exercise plus feeding (exercised leg; FEDEX) on vascular function. We measured LBF using Doppler ultrasound and recorded mean arterial pressure (MAP) to calculate LVC. Our results reveal that although neither age nor RET influenced BASAL LBF, age-related declines in LBF responses to FED were eradicated by RET. Moreover, increases in LBF after FEDEX, which occurred only in young and middle-aged groups before RET (+73 ± 9%, and +90 ± 13%, P < 0.001, respectively), increased in all groups after RET (young +78 ± 10%, middle-aged +96 ± 15%, older +80 ± 19%, P < 0.001). Finally, RET robustly improved LVC under FASTED, FED, and FEDEX conditions in the older group. These data provide novel information that supports the premise that RET represents a valuable strategy to counter age-related impairments in LBF/LVC.


The Journal of Physiology | 2016

Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans

Matthew S. Brook; Daniel J. Wilkinson; William Kyle Mitchell; Jonathan N. Lund; Bethan E. Phillips; Nathaniel J. Szewczyk; Paul L. Greenhaff; Kenneth Smith; Philip J. Atherton

Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age‐related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis.

Collaboration


Dive into the Bethan E. Phillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Smith

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

John Williams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debbie Rankin

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie C. Limb

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge