Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where BethAnn McLaughlin is active.

Publication


Featured researches published by BethAnn McLaughlin.


Journal of Neurochemistry | 2002

Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release.

Elias Aizenman; Amy K. Stout; Karen A. Hartnett; Kirk E. Dineley; BethAnn McLaughlin; Ian J. Reynolds

Abstract: The membrane‐permeant oxidizing agent 2,2′‐dithiodipyridine (DTDP) can induce Zn2+ release from metalloproteins in cell‐free systems. Here, we report that brief exposure to DTDP triggers apoptotic cell death in cultured neurons, detected by the presence of both DNA laddering and asymmetric chromatin formation. Neuronal death was blocked by increased extracellular potassium levels, by tetraethylammonium, and by the broad‐spectrum cysteine protease inhibitor butoxy‐carbonyl‐aspartate‐fluoromethylketone. N,N,N′,N′‐Tetrakis‐(2‐pyridylmethyl)ethylenediamine (TPEN) and other cell‐permeant metal chelators also effectively blocked DTDP‐induced toxicity in neurons. Cell death, however, was not abolished by the NMDA receptor blocker MK‐801, by the intracellular calcium release antagonist dantrolene, or by high concentrations of ryanodine. DTDP generated increases in fluorescence signals in cultured neurons loaded with the zinc‐selective dye Newport Green. The fluorescence signals following DTDP treatment also increased in fura‐2‐ and magfura‐2‐loaded neurons. These responses were completely reversed by TPEN, consistent with a DTDP‐mediated increase in intracellular free Zn2+ concentrations. Our studies suggest that under conditions of oxidative stress, Zn2+ released from intracellular stores may contribute to the initiation of neuronal apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Caspase 3 activation is essential for neuroprotection in preconditioning

BethAnn McLaughlin; Karen A. Hartnett; Joseph A. Erhardt; Jeffrey J. Legos; Ray White; Frank C. Barone; Elias Aizenman

Sublethal insults can induce tolerance to subsequent stressors in neurons. As cell death activators such as ROS generation and decreased ATP can initiate tolerance, we tested whether other cellular elements normally associated with neuronal injury could add to this process. In an in vivo model of ischemic tolerance, we were surprised to observe widespread caspase 3 cleavage, without cell death, in preconditioned tissue. To dissect the preconditioning pathways activating caspases, and the mechanisms by which these proteases are held in check, we developed an in vitro model of excitotoxic tolerance. In this model, antioxidants and caspase inhibitors blocked ischemia-induced protection against N-methyl-d-aspartate toxicity. Moreover, agents that blocked preconditioning also attenuated induction of HSP 70; transient overexpression of a constitutive form of this protein prevented HSP 70 up-regulation and blocked tolerance. We outline a neuroprotective pathway where events normally associated with apoptotic cell death are critical for cell survival.


Journal of Neurochemistry | 2002

Toxicity of Dopamine to Striatal Neurons In Vitro and Potentiation of Cell Death by a Mitochondrial Inhibitor

BethAnn McLaughlin; David Nelson; Maria Erecińska; Marie-Françoise Chesselet

Abstract: Intrastriatal injections of the mitochondrial toxins malonate and 3‐nitropropionic acid produce selective cell death similar to that seen in transient ischemia and Huntingtons disease. The extent of cell death can be attenuated by pharmacological or surgical blockade of cortical glutamatergic input. It is not known, however, if dopamine contributes to toxicity caused by inhibition of mitochondrial function. Exposure of primary striatal cultures to dopamine resulted in dose‐dependent death of neurons. Addition of medium supplement containing free radical scavengers and antioxidants decreased neuronal loss. At high concentrations of the amine, cell death was predominantly apoptotic. Methyl malonate was used to inhibit activity of the mitochondrial respiratory chain. Neither methyl malonate (50 µM) nor dopamine (2.5 µM) caused significant toxicity when added individually to cultures, whereas simultaneous addition of both compounds killed 60% of neurons. Addition of antioxidants and free radical scavengers to the incubation medium prevented this cell death. Dopamine (up to 250 µM) did not alter the ATP/ADP ratio after a 6‐h incubation. Methyl malonate, at 500 µM, reduced the ATP/ADP ratio by ∼30% after 6 h; this decrease was not augmented by coincubation with 25 µM dopamine. Our results suggest that dopamine causes primarily apoptotic death of striatal neurons in culture without damaging cells by an early adverse action on oxidative phosphorylation. However, when combined with minimal inhibition of mitochondrial function, dopamine neurotoxicity is markedly enhanced.


Journal of Biological Chemistry | 2008

Electrophilic Cyclopentenone Neuroprostanes Are Anti-inflammatory Mediators Formed from the Peroxidation of the ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid

Erik S. Musiek; Joshua D. Brooks; Myungsoo Joo; Enrico Brunoldi; Alessio Porta; Giuseppe Zanoni; Giovanni Vidari; Timothy S. Blackwell; Thomas J. Montine; Ginger L. Milne; BethAnn McLaughlin; Jason D. Morrow

The ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) possesses potent anti-inflammatory properties and has shown therapeutic benefit in numerous inflammatory diseases. However, the molecular mechanisms of these anti-inflammatory properties are poorly understood. DHA is highly susceptible to peroxidation, which yields an array of potentially bioactive lipid species. One class of compounds are cyclopentenone neuroprostanes (A4/J4-NPs), which are highly reactive and similar in structure to anti-inflammatory cyclopentenone prostaglandins. Here we show that a synthetic A4/J4-NP, 14-A4-NP (A4-NP), potently suppresses lipopolysaccharideinduced expression of inducible nitric-oxide synthase and cyclooxygenase-2 in macrophages. Furthermore, A4-NP blocks lipopolysaccharide-induced NF-κB activation via inhibition of Iκ kinase-mediated phosphorylation of IκBα. Mutation on Iκ kinase β cysteine 179 markedly diminishes the effect of A4-NP, suggesting that A4-NP acts via thiol modification at this residue. Accordingly, the effects of A4-NP are independent of peroxisome proliferator-activated receptor-γ and are dependent on an intact reactive cyclopentenone ring. Interestingly, free radical-mediated oxidation of DHA greatly enhances its anti-inflammatory potency, an effect that closely parallels the formation of A4/J4-NPs. Furthermore, chemical reduction or conjugation to glutathione, both of which eliminate the bioactivity of A4-NP, also abrogate the anti-inflammatory effects of oxidized DHA. Thus, we have demonstrated that A4/J4-NPs, formed via the oxidation of DHA, are potent inhibitors of NF-κB signaling and may contribute to the anti-inflammatory actions of DHA. These findings have implications for understanding the anti-inflammatory properties of ω-3 fatty acids, and elucidate novel interactions between lipid peroxidation products and inflammation.


Neuroscience | 1998

Methylmalonate toxicity in primary neuronal cultures

BethAnn McLaughlin; David Nelson; Ian A. Silver; Maria Erecińska; M.-F Chesselet

Several inhibitors of mitochondrial complex II cause neuronal death in vivo and in vitro. The goal of the present work was to characterize in vitro the effects of malonate (a competitive blocker of the complex) which induces neuronal death in a pattern similar to that seen in striatum in Huntingtons disease. Exposure of striatal and cortical cultures from embryonic rat brain for 24 h to methylmalonate, a compound which produces malonate intracellularly, led to a dose-dependent cell death. Methylmalonate (10 mM) caused >90% mortality of neurons although cortical cells were unexpectedly more vulnerable. Cell death was attenuated in a medium containing antioxidants. Further characterization revealed that DNA laddering could be detected after 3 h of treatment. Morphological observations (videomicroscopy and Hoechst staining) showed that both necrotic and apoptotic cell death occurred in parallel; apoptosis was more prevalent. A decrease in the ATP/ADP ratio was observed after 3 h of treatment with 10 mM methylmalonate. In striatal cultures it occurred concomitantly with a decline in GABA and a rise in aspartate content and the aspartate/glutamate ratio. Changes in ion concentrations were measured in similar cortical cultures from mouse brain. Neuronal [Na+]i increased while [K+]i and membrane potential decreased after 20 min of continuous incubation in 10 mM methylmalonate. These changes progressed with time, and a rise in [Ca2+]i was also observed after 1 h. The results demonstrate that malonate collapses cellular ion gradients, restoration of which imposes an additional load on the already compromised ATP-generation machinery. An early elevation in [Ca2+]i may trigger an increase in activity of proteases, lipases and endonucleases and production of free radicals and DNA damage which, ultimately, leads to cells death. The data also suggest that maturational and/or extrinsic factors are likely to be critical for the increased vulnerability of striatal neurons to mitochondrial inhibition in vivo.


Apoptosis | 2004

The kinder side of killer proteases: Caspase activation contributes to neuroprotection and CNS remodeling

BethAnn McLaughlin

Caspases are a family of cysteine proteases that are expressed as inactive zymogens and undergo proteolytic maturation in a sequential manner in which initiator caspases cleave and activate the effector caspases 3, 6 and 7. Effector caspases cleave structural proteins, signaling molecules, DNA repair enzymes and proteins which inhibit apoptosis. Activation of effector, or executioner, caspases has historically been viewed as a terminal event in the process of programmed cell death. Emerging evidence now suggests a broader role for activated caspases in cellular maturation, differentiation and other non-lethal events. The importance of activated caspases in normal cell development and signaling has recently been extended to the CNS where these proteases have been shown to contribute to axon guidance, synaptic plasticity and neuroprotection. This review will focus on the adaptive roles activated caspases in maintaining viability, the mechanisms by which caspases are held in check so as not produce apoptotic cell death and the ramifications of these observations in the treatment of neurological disorders.


Journal of Neurochemistry | 2009

Manganese Exposure is Cytotoxic and Alters Dopaminergic and GABAergic Neurons within the Basal Ganglia

Gregg D. Stanwood; Duncan B. Leitch; Valentina Savchenko; Jane Y. Wu; Vanessa A. Fitsanakis; Douglas J. Anderson; Jeannette N. Stankowski; Michael Aschner; BethAnn McLaughlin

Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson’s disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10–800 μM manganese chloride which resulted in dramatic changes in the neuronal cytoskeleton even at subtoxic concentrations. Using cultures from mice with red fluorescent protein driven by the tyrosine hydroxylase (TH) promoter, we found that dopaminergic neurons were more susceptible to manganese toxicity. To understand the vulnerability of dopaminergic cells to chronic manganese exposure, mice were given i.p. injections of MnCl2 for 30 days. We observed a 20% reduction in TH‐positive neurons in the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as evidenced by the loss of glutamic acid decarboxylase 67 in the striatum. These studies suggest that acute manganese exposure induces cytoskeletal dysfunction prior to degeneration and that chronic manganese exposure results in neurochemical dysfunction with overlapping features to PD.


Journal of Neurochemistry | 2006

Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration

Erik S. Musiek; Rebecca S. Breeding; Ginger L. Milne; Giuseppe Zanoni; Jason D. Morrow; BethAnn McLaughlin

Oxidative stress and subsequent lipid peroxidation are involved in the pathogenesis of numerous neurodegenerative conditions, including stroke. Cyclopentenone isoprostanes (IsoPs) are novel electrophilic lipid peroxidation products formed under conditions of oxidative stress via the isoprostane pathway. These cyclopentenone IsoPs are isomeric to highly bioactive cyclopentenone prostaglandins, yet it has not been determined if these products are biologically active or are formed in the brain. Here we demonstrate that the major cyclopentenone IsoP isomer 15‐A2t‐IsoP potently induces apoptosis in neuronal cultures at submicromolar concentrations. We present a model in which 15‐A2t‐IsoP induced neuronal apoptosis involves initial depletion of glutathione and enhanced production of reactive oxygen species, followed by 12‐lipoxygenase activation and phosphorylation of extracellular signal‐regulated kinase 1/2 and the redox sensitive adaptor protein p66shc, which results in caspase‐3 cleavage. 15‐A2t‐IsoP application also dramatically potentiates oxidative glutamate toxicity at concentrations as low as 100 nm, demonstrating the functional importance of these molecules in neurodegeneration. Finally, we employ novel mass spectrometric methods to show that cyclopentenone IsoPs are formed abundantly in brain tissue under conditions of oxidative stress. Together these findings suggest that cyclopentenone IsoPs may contribute to neuronal death caused by oxidative insults, and that their activity should perhaps be addressed when designing neuroprotective therapies.


European Journal of Pharmacology | 2002

The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury

Jeffrey J. Legos; BethAnn McLaughlin; Stephen D. Skaper; Paul J. L. M. Strijbos; Andrew A. Parsons; Elias Aizenman; Greta Ann Herin; Frank C. Barone; Joseph A. Erhardt

Inhibition of the p38 mitogen-activated protein kinase (MAP Kinase) pathway reduces acute ischemic injury in vivo, suggesting a direct role for this signaling pathway in a number of neurodegenerative processes. The present study was designed to evaluate further the role of p38 MAP Kinase in acute excitotoxic neuronal injury using the selective p38 inhibitor SB-239063 (trans-1-(4hydroxycyclohexyl)-4-(fluorophenyl)-5-(2-methoxy-pyrimidin-4-yl) imidazole). Unlike the widely used p38 inhibitor, SB-203580 (4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole), this second generation p38 inhibitor more selectively inhibits p38 MAP Kinase without affecting the activity of other MAP Kinase signaling pathways and provides a more accurate means to selectively assess the role of p38 in excitotoxicity that has not been previously possible. SB-239063 provided substantial protection against cell death induced by either oxygen glucose deprivation (OGD) or magnesium deprivation in cultured neurons. The ability of this compound to block excitotoxicity was not due to direct inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated currents as SB-239063 did not alter NMDA electrophysiological responses. SB-239063 did not protect against a severe excitotoxic insult induced by 60-min exposure to NMDA. However, when tested against a less severe, brief (5 min) NMDA exposure, p38 inhibition provided substantial protection. These data demonstrate that inhibition of p38 MAP Kinase can confer neuroprotection in vitro against mild but not severe excitotoxic exposure, and suggests that other additional pathways/mechanism(s) may be involved in severe excitotoxic cell death.


Brain Pathology | 2006

Cyclopentenone eicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity.

Erik S. Musiek; Ginger L. Milne; BethAnn McLaughlin; Jason D. Morrow

The activation of cyclooxygenase enzymes in the brain has been implicated in the pathogenesis of numerous neurodegenerative conditions. Similarly, oxidative stress is believed to be a major contributor to many forms of neurodegeneration. These 2 distinct processes are united by a common characteristic: the generation of electrophilic cyclopentenone eicosanoids. These cyclopentenone compounds are defined structurally by the presence of an unsaturated carbonyl moiety in their prostane ring, and readily form Michael adducts with cellular thiols, including those found in glutathione and proteins. The cyclopentenone prostaglandins (PGs) PGA2, PGJ2, and 15‐deoxy‐Δ12,14 PGJ2, enzymatic products of cyclooxygenase‐mediated arachidonic acid metabolism, exert a complex array of potent neurodegenerative, neuroprotective, and anti‐inflammatory effects. Cyclopentenone isoprostanes (A2/J2‐IsoPs), products of non‐enzymatic, free radical‐mediated arachidonate oxidation, are also highly bioactive, and can exert direct neurodegenerative effects. In addition, cyclopentenone products of docosahexaenoic acid oxidation (cyclopentenone neuroprostanes) are also formed abundantly in the brain. For the first time, the formation and biological actions of these various classes of reactive cyclopentenone eicosanoids are reviewed, with emphasis on their potential roles in neurodegeneration. The accumulating evidence suggests that the formation of cyclopentenone eicosanoids in the brain may represent a novel pathogenic mechanism, which contributes to many neurodegenerative conditions.

Collaboration


Dive into the BethAnn McLaughlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik S. Musiek

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elias Aizenman

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge