Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bethany J. Wilcox is active.

Publication


Featured researches published by Bethany J. Wilcox.


Journal of Biomechanics | 2011

Head impact exposure in collegiate football players

Joseph J. Crisco; Bethany J. Wilcox; Jonathan G. Beckwith; Jeffrey J. Chu; Ann-Christine Duhaime; Steven Rowson; Stefan M. Duma; Arthur C. Maerlender; Thomas W. McAllister; Richard M. Greenwald

In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.


Journal of Neurosurgery | 2014

Can helmet design reduce the risk of concussion in football

Steven Rowson; Stefan M. Duma; Richard M. Greenwald; Jonathan G. Beckwith; Jeffrey J. Chu; Kevin M. Guskiewicz; Jason P. Mihalik; Joseph J. Crisco; Bethany J. Wilcox; Thomas W. McAllister; Arthur C. Maerlender; Steven P. Broglio; Brock Schnebel; Scott Anderson; P. Gunnar Brolinson

Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%-75.8%). When controlling for each players exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ(2) = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury.


Journal of Biomechanics | 2014

Head impact exposure in male and female collegiate ice hockey players

Bethany J. Wilcox; Jonathan G. Beckwith; Richard M. Greenwald; Jeffrey J. Chu; Thomas W. McAllister; Laura A. Flashman; Arthur C. Maerlender; Ann-Christine Duhaime; Joseph J. Crisco

The purpose of this study was to quantify head impact exposure (frequency, location and magnitude of head impacts) for individual male and female collegiate ice hockey players and to investigate differences in exposure by sex, player position, session type, and team. Ninety-nine (41 male, 58 female) players were enrolled and 37,411 impacts were recorded over three seasons. Frequency of impacts varied significantly by sex (males: 287 per season, females: 170, p<0.001) and helmet impact location (p<0.001), but not by player position (p=0.088). Head impact frequency also varied by session type; both male and female players sustained more impacts in games than in practices (p<0.001), however the magnitude of impacts did not differ between session types. There was no difference in 95th percentile peak linear acceleration between sexes (males: 41.6 g, females: 40.8 g), but 95th percentile peak rotational acceleration and HITsp (a composite severity measure) were greater for males than females (4424, 3409 rad/s(2), and 25.6, 22.3, respectively). Impacts to the back of the helmet resulted in the greatest 95th percentile peak linear accelerations for males (45.2 g) and females (50.4 g), while impacts to the side and back of the head were associated with the greatest 95th percentile peak rotational accelerations (males: 4719, 4256 rad/sec(2), females: 3567, 3784 rad/sec(2) respectively). It has been proposed that reducing an individuals head impact exposure is a practical approach for reducing the risk of brain injuries. Strategies to decrease an individual athletes exposure need to be sport and gender specific, with considerations for team and session type.


Journal of Athletic Training | 2014

Head-impact mechanisms in men's and women's collegiate ice hockey

Bethany J. Wilcox; Jason T. Machan; Jonathan G. Beckwith; Richard M. Greenwald; Emily Burmeister; Joseph J. Crisco

CONTEXT Concussion injury rates in mens and womens ice hockey are reported to be among the highest of all collegiate sports. Quantification of the frequency of head impacts and the magnitude of head acceleration as a function of the different impact mechanisms (eg, head contact with the ice) that occur in ice hockey could provide a better understanding of this high injury rate. OBJECTIVE To quantify and compare the per-game frequency and magnitude of head impacts associated with various impact mechanisms in mens and womens collegiate ice hockey players. DESIGN Cohort study. SETTING Collegiate ice hockey rink. PATIENTS OR OTHER PARTICIPANTS Twenty-three men and 31 women from 2 National Collegiate Athletic Association Division I ice hockey teams. MAIN OUTCOME MEASURE(S) We analyzed magnitude and frequency (per game) of head impacts per player among impact mechanisms and between sexes using generalized mixed linear models and generalized estimating equations to account for repeated measures within players. INTERVENTION(S) Participants wore helmets instrumented with accelerometers to allow us to collect biomechanical measures of head impacts sustained during play. Video footage from 53 games was synchronized with the biomechanical data. Head impacts were classified into 8 categories: contact with another player; the ice, boards or glass, stick, puck, or goal; indirect contact; and contact from celebrating. RESULTS For men and women, contact with another player was the most frequent impact mechanism, and contact with the ice generated the greatest-magnitude head accelerations. The men had higher per-game frequencies of head impacts from contact with another player and contact with the boards than did the women (P < .001), and these impacts were greater in peak rotational acceleration (P = .027). CONCLUSIONS Identifying the impact mechanisms in collegiate ice hockey that result in frequent and high-magnitude head impacts will provide us with data that may improve our understanding of the high rate of concussion in the sport and inform injury-prevention strategies.


Gait & Posture | 2012

Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers

Damian G. Stephen; Bethany J. Wilcox; James Niemi; Jason R. Franz; D. Casey Kerrigan; Susan E. D’Andrea

The purpose of this study was to determine whether providing subsensory stochastic-resonance mechanical vibration to the foot soles of elderly walkers could decrease gait variability. In a randomized double-blind controlled trial, 29 subjects engaged in treadmill walking while wearing sandals customized with three actuators capable of producing stochastic-resonance mechanical vibration embedded in each sole. For each subject, we determined a subsensory level of vibration stimulation. After a 5-min acclimation period of walking with the footwear, subjects were asked to walk on the treadmill for six trials, each 30s long. Trials were pair-wise random: in three trials, actuators provided subsensory vibration; in the other trials, they did not. Subjects wore reflective markers to track body motion. Stochastic-resonance mechanical stimulation exhibited baseline-dependent effects on spatial stride-to-stride variability in gait, slightly increasing variability in subjects with least baseline variability and providing greater reductions in variability for subjects with greater baseline variability (p<.001). Thus, applying stochastic-resonance mechanical vibrations on the plantar surface of the foot reduces gait variability for subjects with more variable gait. Stochastic-resonance mechanical vibrations may provide an effective intervention for preventing falls in healthy elderly walkers.


Annals of Biomedical Engineering | 2014

An experimental and numerical investigation of head dynamics due to stick impacts in girls' lacrosse.

Justin D. Morse; Jennifer Franck; Bethany J. Wilcox; Joseph J. Crisco; Christian Franck

A method of investigating head acceleration and intracranial dynamics from stick impacts in girls’ and women’s lacrosse was developed using headform impact experiments and a finite element head model. Assessing the likelihood of head injury due to stick-head impacts is of interest in girls’ and women’s lacrosse due to the current lack of head protection during play. Experimental and simulation data were compared to characterize the head acceleration caused by stick-head impacts. Validation against cadaver head impact experiments ensures that the finite element model, with its relatively simple material properties, can provide means to develop a better understanding of the intracranial dynamics during lacrosse stick impacts. Our numerical results showed the peak acceleration at the center of gravity increased linearly with impact force, and was generally in agreement with the experimental data. von Mises stresses and peak principal strains, two common literature injury indicators, were examined within the finite element model, and peak values were below the previously reported thresholds for mild traumatic brain injury. By reconstructing typical in-game, unprotected stick-head impacts, this investigation lays the foundation for a quantitative methodology of injury prediction in girls’ and womens’ lacrosse.


Journal of Applied Biomechanics | 2014

Batting cage performance of wood and nonwood youth baseball bats.

Joseph J. Crisco; Michael J. Rainbow; Joel B. Schwartz; Bethany J. Wilcox

The purpose of this study was to examine the batting cage performance of wood and nonwood baseball bats used at the youth level. Three wood and ten nonwood bats were swung by 22 male players (13 to 18 years old) in a batting cage equipped with a 3-dimensional motion capture (300 Hz) system. Batted ball speeds were compared using a one-way ANOVA and bat swing speeds were analyzed as a function of bat moment of inertia by linear regression. Batted ball speeds were significantly faster for three nonwood bat models (P<.001), significantly slower for one nonwood model, and not different for six nonwood bats when compared with wood bats. Bat impact speed significantly (P<.05) decreased with increasing bat moment of inertia for the 13-, 14-, and 15-year-old groups, but not for the other age groups. Ball-bat coefficients of restitution (BBCOR) for all nonwood were greater than for wood, but this factor alone did not correlate with bat performance. Our findings indicate that increases in BBCOR and swing speed were not associated with faster batted ball speeds for the bats studied whose moment of inertia was substantially less than that of a wood bat of similar length.


Journal of Biomechanics | 2015

Wrist range of motion and motion frequency during toy and game play with a joint-specific controller specially designed to provide neuromuscular therapy: A proof of concept study in typically developing children

Joseph J. Crisco; Joel B. Schwartz; Bethany J. Wilcox; Holly Brideau; Benjamin Basseches; Karen Kerman

Upper extremities affected by hemiplegic cerebral palsy (CP) and other neuromuscular disorders have been demonstrated to benefit from therapy, and the greater the duration of the therapy, the greater the benefit. A great motivator for participating in and extending the duration of therapy with children is play. Our focus is on active motion therapy of the wrist and forearm. In this study we examine the wrist motions associated with playing with two toys and three computer games controlled by a specially-designed play controller. Twenty children (ages 5-11) with no diagnosis of a muscular disorder were recruited. The play controller was fitted to the wrist and forearm of each child and used to measure and log wrist flexion and extension. Play activity and enjoyment were quantified by average wrist range of motion (ROM), motion frequency measures, and a discrete visual scale. We found significant differences in the average wrist ROM and motion frequency among the toys and games, yet there were no differences in the level of enjoyment across all toys and games, which was high. These findings indicate which toys and games may elicit the greater number of goal-directed movements, and lay the foundation for our long-term goal to develop and evaluate innovative motion-specific play controllers that are engaging rehabilitative devices for enhancing therapy and promoting neural plasticity and functional recovery in children with CP.


Medicine and Science in Sports and Exercise | 2014

Limitations of "validation study of helmet-based impact measurement system in hockey"

Bethany J. Wilcox; Jonathan G. Beckwith; Richard M. Greenwald; Joseph J. Crisco

Dear Editor-in-Chief, Our team of researchers has extensively used Head Impact Telemetry (HIT) technology to investigate the relationship between head impact biomechanics and concussions. Members of our team invented and developed this technology specifically for these investigations, so we read with interest the recent article published by Allison et al. (1), describing a laboratory test that compared a hockey HIT System and a Hybrid III headform. Strong correlations were found between acceleration measurements; however, differences in peak accelerations were larger than other research-specific variants of the HIT System (2,5,7). Additionally, a subset of trials was classified as invalid by HIT System data qualification algorithms. We believe the test protocol used in this study is inconsistent with on-ice use and led the authors to draw incorrect conclusions. The authors suggest “…validation of the HIT System for ice hockey is extremely limited…” and a “comprehensive validation” is necessary due to “differences in accelerometer orientation, processing algorithm, and helmet shape.” To clarify, HIT System hockey helmets use the same accelerometer orientation, embedded electronics, and published (not “proprietary”) processing algorithms as previously validated boxing, soccer, and football research systems (2,4,5,7). Additionally, on-ice performance has been corroborated through video review and results have been consistent across multiple independent sites (3,6,8).The authors’ tests produced lower coefficients of determination and a more skewed relationship between acceleration measures than previous evaluations of similarly configured systems (2,5,7). We believe these discrepancies are primarily due to the substantial protocol limitations described by the authors. The hockey HIT System was designed for research and is not distributed commercially. To evaluate performance in the laboratory, helmet fit should be carefully controlled, as described in the literature (6), and test conditions (i.e. location, severity, and contact surface) should be representative of on-ice conditions and undergo verification for biofidelity (5,7). The authors described their helmet fit as a “worst-case scenario”, but it was actually unrealistic as there was no chin strap attachment and the facemask chin pad was disengaged from the headform. Additionally, while 80% of on-ice impacts are attributed to contact with another player, including helmet-to-helmet, or flat surfaces (e.g., boards or ice) (8), this study delivered impacts using a noncompliant, spherical impacting ram, which is not a reasonable model of either condition. Interestingly, 19% of these tests were classified as uncharacteristic of on-ice impacts by the HIT System, demonstrating limited test fidelity and suggesting a far more conservative interpretation of these results is warranted. Despite these substantial study limitations, the authors recommend applying their laboratory-derived “calibration factors” to on-ice data without first considering plausibility. If previously published, on-ice data from male hockey players (3) were adjusted by the proposed calibration factor, 5% of all impacts (15–20 impacts per player) would exceed 95g—a level typically associated with concussion. Additionally, distributions of peak acceleration would be 58% (3) higher than in football, an unlikely outcome considering similar injury rates exist between sports. We agree that laboratory evaluations play an important role in assessing on-field measurement systems. Validation, however, should be a multiphase process that includes on-field/ice corroboration. The conclusions made in this study could lead to misapprehensions of hockey HIT System data, as well as misinterpretations of studies that have utilized this tool to advance the biomechanical understanding of concussions.


Physical Therapy | 2016

Joint-Specific Play Controller for Upper Extremity Therapy: Feasibility Study in Children With Wrist Impairment

Bethany J. Wilcox; Megan Wilkins; Benjamin Basseches; Joel B. Schwartz; Karen Kerman; Christine L. Trask; Holly Brideau; Joseph J. Crisco

Background Challenges with any therapeutic program for children include the level of the childs engagement or adherence. Capitalizing on one of the primary learning avenues of children, play, the approach described in this article is to develop therapeutic toy and game controllers that require specific and repetitive joint movements to trigger toy/game activation. Objective The goal of this study was to evaluate a specially designed wrist flexion and extension play controller in a cohort of children with upper extremity motor impairments (UEMIs). The aim was to understand the relationship among controller play activity, measures of wrist and forearm range of motion (ROM) and spasticity, and ratings of fun and difficulty. Design This was a cross-sectional study of 21 children (12 male, 9 female; 4–12 years of age) with UEMIs. Methods All children participated in a structured in-clinic play session during which measurements of spasticity and ROM were collected. The children were fitted with the controller and played with 2 toys and 2 computer games for 5 minutes each. Wrist flexion and extension motion during play was recorded and analyzed. In addition, children rated the fun and difficulty of play. Results Flexion and extension goal movements were repeatedly achieved by children during the play session at an average frequency of 0.27 Hz. At this frequency, 15 minutes of play per day would result in approximately 1,700 targeted joint motions per week. Play activity was associated with ROM measures, specifically supination, but toy perception ratings of enjoyment and difficulty were not correlated with clinical measures. Limitations The reported results may not be representative of children with more severe UEMIs. Conclusions These outcomes indicate that the therapeutic controllers elicited repetitive goal movements and were adaptable, enjoyable, and challenging for children of varying ages and UEMIs.

Collaboration


Dive into the Bethany J. Wilcox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur C. Maerlender

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge