Betina Córsico
National University of La Plata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Betina Córsico.
Annual Review of Nutrition | 2008
Judith Storch; Betina Córsico
Fatty acid-binding proteins (FABPs) are abundant intracellular proteins that bind long-chain fatty acids with high affinity. Nine separate mammalian FABPs have been identified, and their tertiary structures are highly conserved. The FABPs have unique tissue-specific distributions that have long suggested functional differences among them. In the last decade, considerable progress has been made in understanding the specific functions of the FABPs and, in some cases, their mechanisms of action at the molecular level. The FABPs appear to be involved in the extranuclear compartments of the cell by trafficking their ligands within the cytosol via interactions with organelle membranes and specific proteins. Several members of the FABP family have been shown to function directly in the regulation of cognate nuclear transcription factor activity via ligand-dependent translocation to the nucleus. This review will focus on these emerging functions and mechanisms of the FABPs, highlighting the unique functional properties of each as well as the similarities among them.
Biochimica et Biophysica Acta | 1998
Alejandra Tricerri; Betina Córsico; Juan Domingo Toledo; Horacio A. Garda; Rodolfo R. Brenner
Discoidal recombinant high density lipoproteins (rHDL) of apolipoprotein AI (apoAI) and palmitoyloleoylphosphatidylcholine (POPC), with or without cholesterol, were prepared by cholate dialysis. By gel filtration, rHDL containing 2-4 (Lp2, Lp3 and Lp4) apoAI molecules/particle were obtained. The ApoAI conformation in these rHDL was investigated by tryptophan fluorescence, denaturation with guanidine HCl, and immunoreactivity with two monoclonal antibodies recognizing epitopes in the N-terminal and central domains. Data show that apoAI conformation is highly dependent on particle size as well as on cholesterol. The ability of rHDL to interact with lipid bilayer was studied by measuring leakage induction on POPC and POPC/cholesterol vesicles loaded with terbium/dipicolinic acid. Among the cholesterol-free rHDL, the most efficient ones were the smallest Lp2. Leakage induction on POPC vesicles is dramatically decreased by the presence of cholesterol in Lp2 and Lp3. All the rHDL, but specially those containing cholesterol, induced more leakage on the POPC/cholesterol than on the POPC vesicles. These results suggest that in small cholesterol-poor particles, apoAI could have a conformation determining a high affinity for membranes, which could facilitate cholesterol efflux. After cholesterol enrichment, a conformational change in apoAI could decrease the affinity for membranes allowing the lipoprotein release.
Journal of Biological Chemistry | 2006
Lisandro J. Falomir-Lockhart; Lisandro Laborde; Peter C. Kahn; Judith Storch; Betina Córsico
Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the α-helical “portal” region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the α-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the α-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the α2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the α2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the α2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.
Journal of Biological Chemistry | 2013
William S. Lagakos; Xu Dong Guan; Shiu Ying Ho; Luciana Rodriguez Sawicki; Betina Córsico; Sarala Kodukula; Kaeko Murota; Ruth E. Stark; Judith Storch
Background: The intracellular carrier protein(s) for monoacylglycerols (MGs) is unknown. Results: Using chromatography and NMR and fluorescence spectroscopy, we show that liver fatty acid-binding protein (LFABP) is a binding protein for MG and promotes rapid MG transfer to membranes. Conclusion: LFABP binds MG in vitro and in liver cytosol. Significance: LFABP may transport MG, a metabolic intermediate and signaling molecule, in liver and intestinal cytosol. Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG.
Biochimica et Biophysica Acta | 2011
Lisandro J. Falomir-Lockhart; Gisela Raquel Franchini; María Ximena Guerbi; Judith Storch; Betina Córsico
Intestinal and liver fatty acid binding proteins (IFABP and LFABP, respectively) are cytosolic soluble proteins with the capacity to bind and transport hydrophobic ligands between different sub-cellular compartments. Their functions are still not clear but they are supposed to be involved in lipid trafficking and metabolism, cell growth, and regulation of several other processes, like cell differentiation. Here we investigated the interaction of these proteins with different models of phospholipid membrane vesicles in order to achieve further insight into their specificity within the enterocyte. A combination of biophysical and biochemical techniques allowed us to determine affinities of these proteins to membranes, the way phospholipid composition and vesicle size and curvature modulate such interaction, as well as the effect of protein binding on the integrity of the membrane structure. We demonstrate here that, besides their apparently opposite ligand transfer mechanisms, both LFABP and IFABP are able to interact with phospholipid membranes, but the factors that modulate such interactions are different for each protein, further implying different roles for IFABP and LFABP in the intracellular context. These results contribute to the proposed central role of intestinal FABPs in the lipid traffic within enterocytes as well as in the regulation of more complex cellular processes.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2015
Valeria Silva-Álvarez; Ana Maite Folle; Ana Lía Ramos; Fernando Zamarreño; Marcelo D. Costabel; Eduardo A. García-Zepeda; Gustavo Salinas; Betina Córsico; Ana Maria da Costa Ferreira
Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands.
Biochimica et Biophysica Acta | 2010
Eduardo De Gerónimo; Robert M. Hagan; David C. Wilton; Betina Córsico
Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates.
Parasites & Vectors | 2016
Valeria Silva-Álvarez; Ana Maite Folle; Ana Lía Ramos; Eduardo S. Kitano; Leo K. Iwai; Inés Corraliza; Betina Córsico; Ana Maria da Costa Ferreira
BackgroundAntigen B (EgAgB) is an abundant lipoprotein released by the larva of the cestode Echinococcus granulosus into the host tissues. Its protein moiety belongs to the cestode-specific family known as hydrophobic ligand binding protein (HLBP), and is encoded by five gene subfamilies (EgAgB8/1-EgAgB8/5). The functions of EgAgB in parasite biology remain unclear. It may play a role in the parasite’s lipid metabolism since it carries host lipids that E. granulosus is unable to synthesise. On the other hand, there is evidence supporting immuno-modulating activities in EgAgB, particularly on innate immune cells. Both hypothetical functions might involve EgAgB interactions with monocytes and macrophages, which have not been formally analysed yet.MethodsEgAgB binding to monocytes and macrophages was studied by flow cytometry using inflammation-recruited peritoneal cells and the THP-1 cell line. Involvement of the protein and phospholipid moieties in EgAgB binding to cells was analysed employing lipid-free recombinant EgAgB subunits and phospholipase D treated-EgAgB (lacking the polar head of phospholipids). Competition binding assays with plasma lipoproteins and ligands for lipoprotein receptors were performed to gain information about the putative EgAgB receptor(s) in these cells. Arginase-I induction and PMA/LPS-triggered IL-1β, TNF-α and IL-10 secretion were examined to investigate the outcome of EgAgB binding on macrophage response.ResultsMonocytes and macrophages bound native EgAgB specifically; this binding was also found with lipid-free rEgAgB8/1 and rEgAgB8/3, but not rEgAgB8/2 subunits. EgAgB phospholipase D-treatment, but not the competition with phospholipid vesicles, caused a strong inhibition of EgAgB binding activity, suggesting an indirect contribution of phospholipids to EgAgB-cell interaction. Furthermore, competition binding assays indicated that this interaction may involve receptors with affinity for plasma lipoproteins. At functional level, the exposure of macrophages to EgAgB induced a very modest arginase-I response and inhibited PMA/LPS-mediated IL-1β and TNF-α secretion in an IL-10-independent manner.ConclusionEgAgB and, particularly its predominant EgAgB8/1 apolipoprotein, are potential ligands for monocyte and macrophage receptors. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB.
Biochemical Journal | 2015
M. Florencia Rey-Burusco; Marina Ibáñez-Shimabukuro; Mads Gabrielsen; Gisela Raquel Franchini; Andrew J. Roe; Kate Griffiths; Bin Zhan; Alan Cooper; Malcolm W. Kennedy; Betina Córsico; Brian O. Smith
Necator americanus fatty acid and retinol-binding protein-1 (Na-FAR-1) is an abundantly expressed FAR from a parasitic hookworm. The present work describes its tissue distribution, structure and ligand-binding characteristics and shows that Na-FAR-1 expands to transport multiple FA molecules in its internal cavity.
PLOS Neglected Tropical Diseases | 2012
Jorge Luis Pórfido; Gabriela Alvite; Valeria Silva; Malcolm W. Kennedy; Adriana Esteves; Betina Córsico
Background Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP) family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious. Methodology/Principal Findings We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs). Conclusions/Significance This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.