Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betsey Pitts is active.

Publication


Featured researches published by Betsey Pitts.


Nature | 2003

A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance

Thien-Fah Mah; Betsey Pitts; Brett Pellock; Graham C. Walker; Philip S. Stewart; George A. O'Toole

Biofilms are surface-attached microbial communities with characteristic architecture and phenotypic and biochemical properties distinct from their free-swimming, planktonic counterparts. One of the best-known of these biofilm-specific properties is the development of antibiotic resistance that can be up to 1,000-fold greater than planktonic cells. We report a genetic determinant of this high-level resistance in the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa. We have identified a mutant of P. aeruginosa that, while still capable of forming biofilms with the characteristic P. aeruginosa architecture, does not develop high-level biofilm-specific resistance to three different classes of antibiotics. The locus identified in our screen, ndvB, is required for the synthesis of periplasmic glucans. Our discovery that these periplasmic glucans interact physically with tobramycin suggests that these glucose polymers may prevent antibiotics from reaching their sites of action by sequestering these antimicrobial agents in the periplasm. Our results indicate that biofilms themselves are not simply a diffusion barrier to these antibiotics, but rather that bacteria within these microbial communities employ distinct mechanisms to resist the action of antimicrobial agents.


Applied and Environmental Microbiology | 2004

Stratified Growth in Pseudomonas aeruginosa Biofilms

Erin Werner; Frank L. Roe; Amandine Bugnicourt; Michael J. Franklin; Arne Heydorn; Søren Molin; Betsey Pitts; Philip S. Stewart

ABSTRACT In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct carried an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp1 promoter. Both GFP reporters indicated that active protein synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 μm wide in colony biofilms and 30 μm wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 μm into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain active, growing cells, they can also harbor large numbers of cells that are inactive and not growing.


Journal of Bacteriology | 2007

Spatial Patterns of DNA Replication, Protein Synthesis, and Oxygen Concentration within Bacterial Biofilms Reveal Diverse Physiological States

Suriani Abdul Rani; Betsey Pitts; Haluk Beyenal; Raaja Raajan Angathevar Veluchamy; Zbigniew Lewandowski; William M. Davison; Kelli Buckingham-Meyer; Philip S. Stewart

It has long been suspected that microbial biofilms harbor cells in a variety of activity states, but there have been few direct experimental visualizations of this physiological heterogeneity. Spatial patterns of DNA replication and protein synthetic activity were imaged and quantified in staphylococcal biofilms using immunofluorescent detection of pulse-labeled DNA and also an inducible green fluorescent protein (GFP) construct. Stratified patterns of DNA synthetic and protein synthetic activity were observed in all three biofilm systems to which the techniques were applied. In a colony biofilm system, the dimensions of the zone of anabolism at the air interface ranged from 16 to 38 microm and corresponded with the depth of oxygen penetration measured with a microelectrode. A second zone of activity was observed along the nutrient interface of the biofilm. Much of the biofilm was anabolically inactive. Since dead cells constituted only 10% of the biofilm population, most of the inactive cells in the biofilm were still viable. Collectively, these results suggest that staphylococcal biofilms contain cells in at least four distinct states: growing aerobically, growing fermentatively, dead, and dormant. The variety of activity states represented in a biofilm may contribute to the special ecology and tolerance to antimicrobial agents of biofilms.


Journal of Microbiological Methods | 2003

A microtiter-plate screening method for biofilm disinfection and removal

Betsey Pitts; Martin A. Hamilton; Nicholas Zelver; Philip S. Stewart

A quantitative spectrophotometric method was developed to measure the removal and killing efficacy of antibiofilm agents. Biofilms of Pseudomonas aeruginosa or Staphylococcus epidermidis were grown in 96-well plates, treated with an agent, then stained with either the biomass indicator crystal violet or the respiratory indicator 5-cyano-2,3-ditolyl tetrazolium chloride. This rapid screening method is sensitive enough to elucidate concentration-response relationships as well as differences between species responses to treatments. Using these assays, agents can be ranked by their ability to remove or kill biofilm.


Antimicrobial Agents and Chemotherapy | 2005

Rapid Diffusion of Fluorescent Tracers into Staphylococcus epidermidis Biofilms Visualized by Time Lapse Microscopy

Suriani Abdul Rani; Betsey Pitts; Philip S. Stewart

ABSTRACT The transient diffusion of fluorescent tracers into biofilm cell clusters of Staphylococcus epidermidis was visualized by time lapse confocal scanning laser microscopy. Rhodamine B diffused into the center of cell clusters that were 200 to 600 μm in diameter within a few minutes. The apparent effective diffusion coefficient calculated from these data averaged 3.7 × 10−7 cm2 s−1 or 11% of the value in pure water. Fluorescein diffused into biofilm more rapidly, with a diffusion coefficient that averaged 1.6 × 10−6 cm2 s−1, or 32% of the value in water. This study provides direct, visual confirmation that solutes the size of many antibiotics and biocides can diffuse rapidly into biofilms.


Applied and Environmental Microbiology | 2008

Localized Gene Expression in Pseudomonas aeruginosa Biofilms

Ailyn P. Lenz; Kerry S. Williamson; Betsey Pitts; Philip S. Stewart; Michael J. Franklin

ABSTRACT Gene expression in biofilms is dependent on bacterial responses to the local environmental conditions. Most techniques for studying bacterial gene expression in biofilms characterize average values across the entire population. Here, we describe the use of laser capture microdissection microscopy (LCMM) combined with multiplex quantitative real-time reverse transcriptase PCR (qRT-PCR) to isolate and quantify RNA transcripts from small groups of cells at spatially resolved sites within biofilms. The approach was first tested and analytical parameters were determined for Pseudomonas aeruginosa containing an isopropyl-β-d-thiogalactopyranoside-inducible gene for the green fluorescent protein (gfp). The results show that the amounts of gfp mRNA were greatest in the top zones of the biofilms, and that gfp mRNA levels correlated with the zone of active green fluorescent protein fluorescence. The method then was used to quantify transcripts from wild-type P. aeruginosa biofilms for a housekeeping gene, acpP; the 16S rRNA; and two genes regulated by quorum sensing, phzA1 and aprA. The results demonstrated that the amount of acpP mRNA was greatest in the top 30 μm of the biofilm, with little or no mRNA for this gene at the base of the biofilms. In contrast, 16S rRNA amounts were relatively uniform throughout biofilm strata. Using this strategy, the RNA amounts of individual genes were determined, and therefore the results are dependent on both gene expression and the half-life of the transcripts. Therefore, the uniform amount of rRNA throughout the biofilms likely is due to the stability of the rRNA within ribosomes. The levels of aprA mRNA showed stratification, with the largest amounts in the upper 30-μm zone of these biofilms. The results demonstrate that mRNA levels for individual genes are not uniformly distributed throughout biofilms but may vary by orders of magnitude over small distances. The LCMM/qRT-PCR technique can be used to resolve and quantify this RNA variability at high spatial resolution.


Antimicrobial Agents and Chemotherapy | 2008

Comparison of the Antimicrobial Effects of Chlorine, Silver Ion, and Tobramycin on Biofilm

Jaeeun Kim; Betsey Pitts; Philip S. Stewart; Anne K. Camper; Jeyong Yoon

ABSTRACT The systematic understanding of how various antimicrobial agents are involved in controlling biofilms is essential in order to establish an effective strategy for biofilm control, since many antimicrobial agents are effective against planktonic cells but are ineffective when they are used against the same bacteria growing in a biofilm state. Three different antimicrobial agents (chlorine, silver, and tobramycin) and three different methods for the measurement of membrane integrity (plate counts, the measurement of respiratory activity with 5-cyano-2,3-ditolyl tetrazolium chloride [CTC] staining, and BacLight Live/Dead staining) were used along with confocal laser scanning microscopy (CLSM) and epifluorescence microscopy to examine the activities of the antimicrobials on biofilms in a comparative way. The three methods of determining the activities of the antimicrobials gave very different results for each antimicrobial agent. Among the three antimicrobials, tobramycin appeared to be the most effective in reducing the respiratory activity of biofilm cells, based upon CTC staining. In contrast, tobramycin-treated biofilm cells maintained their membrane integrity better than chlorine- or silver-treated ones, as evidenced by imaging by both CLSM and epifluorescence microscopy. Combined and sequential treatments with silver and tobramycin showed an enhanced antimicrobial efficiency of more than 200%, while the antimicrobial activity of either chlorine or tobramycin was antagonized when the agents were used in combination. This observation makes sense when the different oxidative reactivities of chlorine, silver, and tobramycin are considered.


Journal of Bacteriology | 2012

Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population

Kerry S. Williamson; Lee Richards; Ailyn C. Pérez-Osorio; Betsey Pitts; Kathleen McInnerney; Philip S. Stewart; Michael J. Franklin

Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.


BMC Microbiology | 2010

Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis

James P Folsom; Lee Richards; Betsey Pitts; Frank Roe; Garth D. Ehrlich; Albert E. Parker; Aurélien Mazurie; Philip S. Stewart

BackgroundTranscriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared ranki ngs for a priori identified physiological marker genes between the biofilm and published data sets.ResultsBiofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1.ConclusionsCollectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due to low metabolic activity.


Antimicrobial Agents and Chemotherapy | 2010

Spatial and Temporal Patterns of Biocide Action against Staphylococcus epidermidis Biofilms

William M. Davison; Betsey Pitts; Philip S. Stewart

ABSTRACT The dynamic antimicrobial action of chlorine, a quaternary ammonium compound, glutaraldehyde, and nisin within biofilm cell clusters of Staphylococcus epidermidis was investigated using time-lapse confocal scanning laser microscopy. The technique allowed for the simultaneous imaging of changes in biofilm structure and disruption of cellular membrane integrity through the loss of an unbound fluorophore loaded into bacterial cells prior to antimicrobial challenge. Each of the four antimicrobial agents produced distinct spatial and temporal patterns of fluorescence loss. The antimicrobial action of chlorine was localized around the periphery of biofilm cell clusters. Chlorine was the only antimicrobial agent that caused any biofilm removal. Treatment with the quaternary ammonium compound caused membrane permeabilization that started at the periphery of cell clusters, then migrated steadily inward. A secondary pattern superimposed on the penetration dynamic suggested a subpopulation of less-susceptible cells. These bacteria lost fluorescence much more slowly than the majority of the population. Nisin caused a rapid and uniform loss of green fluorescence from all parts of the biofilm without any removal of biofilm. Glutaraldehyde caused no biofilm removal and also no loss of membrane integrity. Measurements of biocide penetration and action time at the center of cell clusters yielded 46 min for 10 mg liter−1 chlorine, 21 min for 50 mg liter−1 chlorine, 25 min for the quaternary ammonium compound, and 4 min for nisin. These results underscore the distinction between biofilm removal and killing and reinforce the critical role of biocide reactivity in determining the rate of biofilm penetration.

Collaboration


Dive into the Betsey Pitts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Willse

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Lauchnor

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin Gerlach

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge