Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betsy A. Bancroft is active.

Publication


Featured researches published by Betsy A. Bancroft.


Conservation Biology | 2008

A Meta-Analysis of the Effects of Ultraviolet B Radiation and Its Synergistic Interactions with pH, Contaminants, and Disease on Amphibian Survival

Betsy A. Bancroft; Nick J. Baker; Andrew R. Blaustein

Human alterations to natural systems have resulted in a loss of biological diversity around the world. Amphibian population losses have been more severe than those of birds and mammals. Amphibian population declines are likely due to many factors including habitat loss, disease, contaminants, introduced species and ultraviolet-B (UVB) radiation. The effect of UVB, however, varies widely among species and can vary within populations of the same species or at different life-history stages. This variation has often led to opposing conclusions about how UVB affects amphibians. We used meta-analysis techniques to explore the overall effects of UVB radiation on survival in amphibians. We also used recently developed factorial meta-analytic techniques to quantify potential interactions between UVB radiation and other stressors on amphibians. Ultraviolet-B radiation reduced survival of amphibians by 1.9-fold compared with shielded controls. Larvae were more susceptible to damage from UVB radiation compared with embryos, and salamanders were more susceptible compared with frogs and toads. Furthermore, UVB radiation interacted synergistically with other environmental stressors and resulted in greater than additive effects on survival when 2 stressors were present. Our results suggest that UVB radiation is an important stressor in amphibians, particularly in light of potential synergisms between UVB and other stressors in amphibian habitats.


Conservation Biology | 2010

Projected climate impacts for the amphibians of the Western hemisphere.

Joshua J. Lawler; Sarah L. Shafer; Betsy A. Bancroft; Andrew R. Blaustein

Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazils Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.


BioScience | 2007

Amphibian Population Declines: Evolutionary Considerations

Andrew R. Blaustein; Betsy A. Bancroft

ABSTRACT Numerous factors, such as global environmental changes, habitat destruction, introduced species, diseases, and chemical pollution, appear to be contributing to amphibian population declines. Moreover, the life history characteristics and behavior of many amphibian species appear to be placing them in jeopardy. Such behaviors and ecological attributes were molded over evolutionary time under selection pressures that acted on amphibians in a variety of ways. Many biologists who study amphibian population declines, however, have failed to consider some of these evolutionary aspects. Better understanding of amphibian population declines requires that scientists and policymakers consider the ecological processes associated with the declines in light of evolutionary principles such as these: Evolution is limited by historical constraints; not all evolution is adaptive; adaptations are often compromises; evolution can only alter existing variations; and evolution takes time.


Biodiversity and Conservation | 2011

Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein

Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and family, and reliance on water are good predictors of documented infection for species in the continental United States. These results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and may target species for conservation efforts.


Science of The Total Environment | 2013

A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

Nick J. Baker; Betsy A. Bancroft; Tiffany S. Garcia

The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes.


Oecologia | 2010

Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae.

Catherine L. Searle; Lisa K. Belden; Betsy A. Bancroft; Barbara A. Han; Lindsay M. Biga; Andrew R. Blaustein

Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.


Hydrobiologia | 2009

Influence of ultraviolet-B radiation on growth, prevalence of deformities, and susceptibility to predation in Cascades frog (Rana cascadae) larvae

John M. Romansic; Amy A. Waggener; Betsy A. Bancroft; Andrew R. Blaustein

Ambient levels of ultraviolet-B radiation (UVB) have a variety of detrimental effects on aquatic organisms. These include death and effects on growth, development, physiology, and behavior. Amphibians show all of these effects. However, the effects vary with species, life history stage, and ecological context. Little is known about the implications of the detrimental effects of UVB on ecological dynamics. Our study was designed to test how UVB may affect predator–prey interactions, an important ecological dynamic. Specifically, we tested the effect of UVB on the susceptibility of Cascades frog (Rana cascadae) larvae to predation by rough-skinned newts (Taricha granulosa). We also further examined the sublethal effects of UVB on growth and development in Cascades frog larvae. We found no direct effect of UVB exposure on survival. However, UVB-exposed frog larvae displayed decreased growth and increased prevalence of deformities. UVB also caused increased susceptibility to predation, but there was a significant treatment–block interaction. UVB increased susceptibility to predation in two out of five blocks of Cascades frogs. The other three blocks did not show an effect of UVB on susceptibility to predation. Our study suggests that UVB can alter susceptibility to predation in at least one amphibian species. UVB-induced alteration of predator–prey interactions could potentially lead to changes at the population, community, and ecosystem levels.


PLOS ONE | 2017

Linking Ecology and Epidemiology to Understand Predictors of Multi-Host Responses to an Emerging Pathogen, the Amphibian Chytrid Fungus

Stephanie S. Gervasi; Patrick R. Stephens; Jessica Hua; Catherine L. Searle; Gisselle Yang Xie; Jenny Urbina; Deanna H. Olson; Betsy A. Bancroft; Virginia M. Weis; John I. Hammond; Rick A. Relyea; Andrew R. Blaustein

Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system–those who are at greatest risk or who pose the greatest risk for others–is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of landscape-level disease prevalence may help explain current and predict future pathogen dynamics in the Bd system.


Ecology and Evolution | 2016

Weighing the relative potential impacts of climate change and land‐use change on an endangered bird

Betsy A. Bancroft; Joshua J. Lawler; Nathan H. Schumaker

Abstract Climate change and land‐use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land‐use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual‐based model to explore the effects of land‐use change and climate change on a population of the endangered Red‐cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land‐use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate‐driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ‐GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land‐use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor‐quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.


Ecology Letters | 2007

Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta‐analysis

Betsy A. Bancroft; Nick J. Baker; Andrew R. Blaustein

Collaboration


Dive into the Betsy A. Bancroft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deanna H. Olson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge