Betsy J. Bricker
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Betsy J. Bricker.
Journal of Bacteriology | 2005
Shirley M. Halling; Brooke Peterson-Burch; Betsy J. Bricker; Richard L. Zuerner; Zhang Qing; Lingling Li; Vivek Kapur; David P. Alt; Steven C. Olsen
Brucellosis is a worldwide disease of humans and livestock that is caused by a number of very closely related classical Brucella species in the alpha-2 subdivision of the Proteobacteria. We report the complete genome sequence of Brucella abortus field isolate 9-941 and compare it to those of Brucella suis 1330 and Brucella melitensis 16 M. The genomes of these Brucella species are strikingly similar, with nearly identical genetic content and gene organization. However, a number of insertion-deletion events and several polymorphic regions encoding putative outer membrane proteins were identified among the genomes. Several fragments previously identified as unique to either B. suis or B. melitensis were present in the B. abortus genome. Even though several fragments were shared between only B. abortus and B. suis, B. abortus shared more fragments and had fewer nucleotide polymorphisms with B. melitensis than B. suis. The complete genomic sequence of B. abortus provides an important resource for further investigations into determinants of the pathogenicity and virulence phenotypes of these bacteria.
Journal of Veterinary Diagnostic Investigation | 2003
Betsy J. Bricker; Darla R. Ewalt; Steven C. Olsen; Allen E. Jensen
In a blind test, 344 samples representing 80 bacterial isolates were analyzed by the Brucella abortus species–specific polymerase chain reaction (BaSS PCR) assay for the identification and discrimination of B. abortus field strains (wild-type biovars 1, 2, and 4) from 1) B. abortus vaccine strains, 2) other Brucella species, and 3) non-Brucella bacteria. Identical samples were tested in 2 laboratories. Half the samples were fully viable, and half were bacteria that had been killed by methanol fixation. The results in 1 laboratory correctly identified 100% of the samples, resulting in a predictive value of 100% for all categories and 100% sensitivity and specificity under the prescribed conditions. The second laboratory misidentified 31 samples, resulting in a range of 66.7–100% sensitivity, 93.2–99.7% specificity, and 77.3–98.2% predictive values depending on the category. There was no significant difference in viable versus fixed bacteria for either laboratory. Subsequent review of the protocol indicated that contamination was the likely cause of 26 of the 31 erroneous identifications. The results show that the BaSS PCR assay has the potential to be a very reliable screening tool for B. abortus identification. However, the data also provide a cautionary reminder of the importance of preventing contamination in diagnostic PCR.
BMC Microbiology | 2005
Betsy J. Bricker; Darla R. Ewalt
BackgroundA fundamental question that arises during epidemiological investigations of bacterial disease outbreaks is whether the outbreak strain is genetically related to a proposed index strain. Highly discriminating genetic markers for characterizing bacterial strains can help in clarifying the genetic relationships among strains. Under the auspices of the European Society of Clinical Microbiology and Infectious Diseases, the European Study Group for Epidemiological Markers (ESGEM) established guidelines for evaluating the performance of typing systems based of a number of criteria. Recently, HOOF-Print genotype analysis, a new method for typing Brucella abortus strains based on hypervariability at eight tandem repeat loci, was described. This paper evaluates the HOOF-Print assay by four of the criteria set out by the ESGEM: typeability, reproducibility, power of discrimination, and concordance with other typing methods.ResultsThe HOOF-Print Assay was evaluated with a test population composed of 97 unrelated field isolates and 6 common laboratory strains of B. abortus. Both typeability and reproducibility of the assay were excellent. Allele diversity and frequency varied widely among the eight loci, ranging from 1 to 13 alleles. The power of discrimination, measured by the Hunter-Gaston discrimination index (HGDI), varied by locus ranging from 0 to 0.89, where a maximal value of 1.0 indicates discrimination of all strains. The HGDI values calculated for subgroups sorted by biovar were similar to the values determined for the whole population. None of the individual loci achieved the recommended HGDI threshold of 0.95, but the HGDI of the composite profiles was 0.99 (93 unique genotypes from 97 field strains evaluated), well above the recommended threshold. By comparison, the HGDI value for biovar typing was 0.61 in a test population biased with disproportionate numbers of the less common biovars. Cluster analysis based on HOOF-Print genotypes assembled the strains into hierarchical groups with no apparent association with the time or location of strain isolation. Likewise, these hierarchical groups were not homogeneous with regard to biotype. In one extreme case, two field isolates with identical fingerprints were identified as different biovars by conventional methods.ConclusionThe main purpose of this study was to assess the ability of HOOF-Print genotyping to discriminate unrelated field strains of B. abortus, and whether the assay met established requirements for bacterial strain typing methods. The discriminatory power of the assay was remarkable, considering the genetic homogeneity found among species within the genus. The assay met or exceeded all of the recommended levels for the performance criteria of typeability, reproducibility, and power of discrimination, however some inconsistencies with conventional biovar typing were observed. Nevertheless, the results indicate that with cautious interpretation, multilocus genotyping of polymorphic tandem repeats by HOOF-Print analysis could be a valuable complement to routine epidemiological investigations into localized B. abortus outbreaks.
Journal of Wildlife Diseases | 2009
Albano Beja-Pereira; Betsy J. Bricker; Shanyuan Chen; Cláudia Almendra; P.J. White; Gordon Luikart
Identifying the source of infectious disease outbreaks is difficult, especially for pathogens that infect multiple wildlife species. Brucella spp. are among the most problematic zoonotic agents worldwide, and they are notoriously difficult to detect and identify. We genotyped 10 variable number of tandem repeat (VNTR) DNA loci in 56 Brucella abortus isolates from bison (Bos bison), elk (Cervus elaphus), and cattle (Bos taurus) to test the wildlife species most likely to be the origin of recent outbreaks of brucellosis in cattle in the Greater Yellowstone Area. Isolates from cattle and elk were nearly identical but highly divergent from bison isolates. These data suggest elk, not bison, are the reservoir species of origin for these cattle infections. This study illustrates the potential power of VNTR genotyping to assess the origin of disease outbreaks, which are increasing worldwide following habitat fragmentation, climate change, and expansion of human and livestock populations.
Molecular Microbiology | 1994
Shirley M. Halling; Betsy J. Bricker
Two repeated DNA elements of 103 bp and 105 bp were discovered in brucellae and designated Bru‐RS1 and Bru‐RS2, respectively. The two elements are palindromic, are 65% similar in sequence, form two families of elements that are slightly divergent in sequence, appear to be intergenic, and are found, collectively, in more than 35 copies in brucellae. These elements are bounded by perfect or nearly perfect inverted repeats. A third copy of the terminal repeat is found within the elements and is the terminus for several truncated copies of the Bru‐RS1 family. Hybridization patterns for the elements among brucellae were unique. The elements are dispersed, highly conserved among brucellae, and hot‐spots for insertion by IS711.
Journal of Veterinary Diagnostic Investigation | 2007
William C. Stoffregen; Steven C. Olsen; C. Jack Wheeler; Betsy J. Bricker; Mitchell V. Palmer; Allen E. Jensen; Shirley M. Halling; David P. Alt
Eighty feral swine were trapped from a herd that had been documented to be seropositive for Brucella and which had been used for Brucella abortus RB51 vaccine trials on a 7,100-hectare tract of land in South Carolina. The animals were euthanized and complete necropsies were performed. Samples were taken for histopathology, Brucella culture, and Brucella serology. Brucella was cultured from 62 (77.5%) animals. Brucella suis was isolated from 55 animals (68.8%), and all isolates were biovar 1. Brucella abortus was isolated from 28 animals (35.0%), and isolates included field strain biovar 1 (21 animals; 26.3%), vaccine strain Brucella abortus S19 (8 animals, 10.0%), and vaccine strain Brucella abortus RB51 (6 animals, 7.5%). Males were significantly more likely to be culture positive than females (92.9% vs. 60.6%). Thirty-nine animals (48.8%) were seropositive. Males also had a significantly higher seropositivity rate than females (61.9% vs. 34.2%). The relative sensitivity rates were significantly higher for the standard tube test (44.6%) and fluorescence polarization assay (42.6%) than the card agglutination test (13.1%). Lesions consistent with Brucella infection were commonly found in the animals surveyed and included inflammatory lesions of the lymph nodes, liver, kidney, and male reproductive organs, which ranged from lymphoplasmacytic to pyogranulomatous with necrosis. This is the first report of an apparent enzootic Brucella abortus infection in a feral swine herd suggesting that feral swine may serve as a reservoir of infection for Brucella abortus as well as Brucella suis for domestic livestock.
Veterinary Microbiology | 1988
Betsy J. Bricker; Louisa B. Tabatabai; Billy L. Deyoe; John E. Mayfield
A 31-kilodalton (kDa) protein extracted from Brucella abortus was previously cloned into Escherichia coli and expressed at high levels. The E. coli-derived protein can be purified by a simple 2-step procedure entailing detergent extraction followed by ion-exchange chromatography. Subsequent analyses show that the E. coli-derived protein is identical to the Brucella-derived protein in molecular weight and isoelectric point. A partial amino acid sequence of the N-terminus of the protein of E. coli origin matches the predicted sequence, based on DNA sequence data. Using specific antiserum raised against the E. coli-derived protein, 34 strains of Brucella, representing all 6 recognized species, were examined for expression of the 31-kDa protein by Western blotting. This protein was detectable in all, but one Brucella species (B. ovis), including all 8 biovars of B. abortus tested. This degree of conservation supports further study of the 31-kDa protein for potential exploitation as a vaccine or diagnostic component.
Journal of Clinical Microbiology | 2010
Krishna K. Gopaul; Betsy J. Bricker; Oswald Crasta; Adrian M. Whatmore
ABSTRACT The reliable differentiation of live Brucella vaccine strains from field isolates is an important element in brucellosis control programs. We describe the design, validation, and implementation of a novel single nucleotide polymorphism (SNP)-based typing platform that offers a rapid, reliable, and robust tool to achieve this with improved diagnostic accuracy compared to existing molecular tests. Furthermore, the assays described are designed such that they supplement, and can be run as an intrinsic part of, a previously described assay identifying Brucella isolates to the species level (K. K. Gopaul, C. J. Smith, M. S. Koylass, and A. M. Whatmore, BMC Microbiol. 8:86), giving a comprehensive molecular typing platform.
Molecular Immunology | 1991
Betsy J. Bricker; Louisa B. Tabatabai; John E. Mayfield
A Brucella abortus protein with a molecular weight of 50 kDa has been shown to bind bovine immunoglobulin G from healthy, brucellosis-free animals. The Brucella immunoglobulin G binding molecule appears to be a protein, since it is susceptible to proteolysis. The protein is presumed to be located on the cell surface, since intact cells precipitate bovine immunoglobulin G. Examination of other species of Brucella shows that all Brucella species and strains tested express the protein. B. abortus cells also bound immunoglobulin G from other animal species. These included cat, chicken, dog, guinea pig, horse, human, mouse, rat, sheep, swine, and turkey but not immunoglobulin G from goat or rabbit.
Journal of Clinical Microbiology | 2000
Betsy J. Bricker; Darla R. Ewalt; Alastair P. MacMillan; Geoff Foster; Simon D. Brew