Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bette L. Willis is active.

Publication


Featured researches published by Bette L. Willis.


Current Biology | 2007

Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change

Terence P. Hughes; Maria J. Rodrigues; David R. Bellwood; Daniela M. Ceccarelli; Ove Hoegh-Guldberg; Natalie A. Moltschaniwskyj; Morgan S. Pratchett; Robert S. Steneck; Bette L. Willis

Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.


Science | 1984

Mass Spawning in Tropical Reef Corals

Peter Lynton Harrison; Russell C. Babcock; Gordon D. Bull; J K Oliver; Carden C. Wallace; Bette L. Willis

Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.


Marine Biology | 1986

Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef

Russell C. Babcock; Gordon D. Bull; Peter Lynton Harrison; A. J. Heyward; J K Oliver; Carden C. Wallace; Bette L. Willis

Following observations of mass spawning of hermatypic corals on the Great Barrier Reef in 1981 and 1982, spawning dates were successfully predicted and documented at five reefs on the Central and Northern Great Barrier Reef in 1983. During the predicted times, 105 species from 36 genera and 11 families were observed to spawn. Of these, 15 species were shown to have an annual gametogenic cycle. All but two of the species observed during mass spawnings shed gametes which underwent external fertilization and development. Synchronous spawning was observed both within and between the five reefs studied, which were separated by as much as 5° of latitude (500 km) or almost a quarter of the length of the Great Barrier Reef. The mass spawning of corals took place on only a few nights of the year, between the full and lastquarter moon in late spring. Maturation of gametes coincided with rapidly rising spring sea temperatures. Lunar and diel cycles may provide cues for the synchronization of gamete release in these species. The hour and night on which the greatest number of species and individuals spawned coincided with low-amplitude tides. Multispecific synchronous spawning, or “mass spawning”, of scleractinian and some alcyonacean corals represents a phenomenon which is, so far, unique in both marine and terrestrial communities.


PLOS Biology | 2007

Thermal stress and coral cover as drivers of coral disease outbreaks

John F. Bruno; Elizabeth R. Selig; Kenneth S. Casey; Cathie A. Page; Bette L. Willis; C. Drew Harvell; Hugh Sweatman; Amy Melendy

Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australias Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.


BMC Genomics | 2009

Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

Eli Meyer; Galina V. Aglyamova; Shi Wang; Jade Buchanan-Carter; David Abrego; John K. Colbourne; Bette L. Willis; Mikhail V. Matz

BackgroundNew methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora.ResultsMore than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing.ConclusionThe methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and population connectivity studies. The characterization of the larval transcriptome for this widely-studied coral will enable research into the biological processes underlying stress responses in corals and evolutionary adaptation to global climate change.


Nature | 2017

Global warming and recurrent mass bleaching of corals

Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough

During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Coral Reefs | 2009

Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

Geoffrey P. Jones; Glenn R. Almany; Garry R. Russ; Peter F. Sale; Robert S. Steneck; M. J. H. van Oppen; Bette L. Willis

The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.


PLOS ONE | 2008

Microbial Ecology of Four Coral Atolls in the Northern Line Islands

Elizabeth A. Dinsdale; Olga Pantos; Steven Smriga; Robert Edwards; Florence Angly; Linda Wegley; Mark Hatay; Dana Hall; Elysa Brown; Matthew Haynes; Lutz Krause; Enric Sala; Stuart A. Sandin; Rebecca Vega Thurber; Bette L. Willis; Farooq Azam; Nancy Knowlton; Forest Rohwer

Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the worlds most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.


Nature | 1999

Patterns of recruitment and abundance of corals along the Great Barrier Reef

T. P. Hughes; Andrew Baird; Elizabeth A. Dinsdale; Natalie A. Moltschaniwskyj; Morgan S. Pratchett; Jason E. Tanner; Bette L. Willis

Different physical and biological processes prevail at different scales. As a consequence, small-scale experiments or local observations provide limited insights into regional or global phenomena. One solution is to incorporate spatial scale explicitly into the experimental and sampling design of field studies, to provide a broader, landscape view of ecology. Here we examine spatial patterns in corals on the Great Barrier Reef, across a spectrum of scales ranging from metres to more than 1,700 km. Our study is unusual because we explore large-scale patterns of a process (recruitment by juveniles) as well as patterns of adult abundance, revealing the relationship between the two. We show that coral-reef assemblages that are similar in terms of abundance may nonetheless show profound differences in dynamics and turnover, with major implications for their ecology, evolution and management.


Archive | 2004

Coral disease on the Great Barrier Reef

Bette L. Willis; Cathie A. Page; Elizabeth A. Dinsdale

Coral disease is one of the most recent in a series of threats that is challenging the resilience of coral reef communities and is of particular concern because it may interact with and augment the impacts of other commonly recognised threats to coral health (e.g. bleaching, over-exploitation of fish stocks, destructive fishing practices and coastal developments). Since the first report of coral disease by Antonius in 1973, the rate of discovery of new diseases has increased dramatically with more than 29 coral diseases now described (Green and Bruckner 2000, Weil, this Vol.). Although coral disease is emerging as one of the major causes of coral reef deterioration in the Caribbean (Hayes and Goreau 1998; Harvell et al. 2002; Weil et al. 2002), at present we know very little about the ecology or pathology of coral disease on Indo-Pacific reefs. The comparatively few reports of coral disease from Indo-Pacific reefs, despite the region encompassing more than 80% of reefs worldwide (Bryant et al. 1998) is in contrast to the high proportion (>65%) of records in the Global Disease Database from the Caribbean reef region, now widely considered to be a coral disease hotspot (Green and Bruckner 2000; Weil, this Vol.). Such comparisons suggest that either disease is genuinely more prevalent in the Caribbean or lack of studies in other reef regions is underestimating its distribution and abundance. Distinguishing between these two alternatives represents an important step in advancing global epizootiological studies.

Collaboration


Dive into the Bette L. Willis's collaboration.

Top Co-Authors

Avatar

David G. Bourne

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Line K. Bay

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. J. H. van Oppen

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Abrego

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Russell C. Babcock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Carden C. Wallace

Museum of Tropical Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge