Bettina Meier
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bettina Meier.
Nature Genetics | 2015
Adam Shlien; Brittany Campbell; Richard de Borja; Ludmil B. Alexandrov; Daniele Merico; David C. Wedge; Peter Van Loo; Patrick Tarpey; Paul Coupland; Sam Behjati; Aaron Pollett; Tatiana Lipman; Abolfazl Heidari; Shriya Deshmukh; Naama Avitzur; Bettina Meier; Moritz Gerstung; Ye Hong; Diana Merino; Manasa Ramakrishna; Marc Remke; Roland Arnold; Gagan B. Panigrahi; Neha P. Thakkar; Karl P Hodel; Erin E. Henninger; A. Yasemin Göksenin; Doua Bakry; George S. Charames; Harriet Druker
DNA replication−associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10−13). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.
PLOS Genetics | 2006
Bettina Meier; Iuval Clejan; Yan Liu; Mia Rochelle Lowden; Anton Gartner; Jonathan Hodgkin; Shawn Ahmed
Mutants of trt-1, the Caenorhabditis elegans telomerase reverse transcriptase, reproduce normally for several generations but eventually become sterile as a consequence of telomere erosion and end-to-end chromosome fusions. Telomere erosion and uncapping do not cause an increase in apoptosis in the germlines of trt-1 mutants. Instead, late-generation trt-1 mutants display chromosome segregation defects that are likely to be the direct cause of sterility. trt-1 functions in the same telomere replication pathway as mrt-2, a component of the Rad9/Rad1/Hus1 (9–1–1) proliferating cell nuclear antigen–like sliding clamp. Thus, the 9–1–1 complex may be required for telomerase to act at chromosome ends in C. elegans. Although telomere erosion limits replicative life span in human somatic cells, neither trt-1 nor telomere shortening affects postmitotic aging in C. elegans. These findings illustrate effects of telomere dysfunction in C. elegans mutants lacking the catalytic subunit of telomerase, trt-1.
Journal of Biological Chemistry | 2004
Rajat Roy; Bettina Meier; Andrew D. McAinsh; Heidi Feldmann
The Saccharomyces cerevisiae Ku heterodimer comprising Yku70p and Yku80p is involved in telomere maintenance and DNA repair by the pathway of non-homologous end joining. It is also a key regulator of transcriptional silencing of genes placed in close proximity to telomeres. Here, we describe the identification of separation-of-function mutants of Yku80p that exhibit defects in silencing but not DNA repair and show that these mutations map to an evolutionarily conserved domain within Yku80p. Furthermore, we reveal that Yku80p interacts with the silent information regulator protein Sir4p and that this interaction is mediated by the N-terminal 200 amino acid residues of Sir4p. Notably, this interaction also requires the region of Yku80p that contains the sites of the silencing defective mutations. Finally, we show that these mutations impair the Yku80p-Sir4p interaction and recruitment of Sir3p to telomeric regions in vivo. Taken together with other data, these findings indicate that the Yku80p-Sir4p interaction plays a vital role in the assembly of telomeric heterochromatin.
The EMBO Journal | 2009
Bettina Meier; Louise J Barber; Yan Liu; Ludmila Shtessel; Simon J. Boulton; Anton Gartner; Shawn Ahmed
The telomerase reverse transcriptase adds de novo DNA repeats to chromosome termini. Here we define Caenorhabditis elegans MRT‐1 as a novel factor required for telomerase‐mediated telomere replication and the DNA‐damage response. MRT‐1 is composed of an N‐terminal domain homologous to the second OB‐fold of POT1 telomere‐binding proteins and a C‐terminal SNM1 family nuclease domain, which confer single‐strand DNA‐binding and processive 3′‐to‐5′ exonuclease activity, respectively. Furthermore, telomerase activity in vivo depends on a functional MRT‐1 OB‐fold. We show that MRT‐1 acts in the same telomere replication pathway as telomerase and the 9‐1‐1 DNA‐damage response complex. MRT‐1 is dispensable for DNA double‐strand break repair, but functions with the 9‐1‐1 complex to promote DNA interstrand cross‐link (ICL) repair. Our data reveal MRT‐1 as a dual‐domain protein required for telomerase function and ICL repair, which raises the possibility that telomeres and ICL lesions may share a common feature that plays a critical role in de novo telomere repeat addition.
Genetics | 2008
Mia Rochelle Lowden; Bettina Meier; Teresa Wei Sy Lee; Julie Hall; Shawn Ahmed
Critically shortened telomeres can be subjected to DNA repair events that generate end-to-end chromosome fusions. The resulting dicentric chromosomes can enter breakage–fusion–bridge cycles, thereby impeding elucidation of the structures of the initial fusion events and a mechanistic understanding of their genesis. Current models for the molecular basis of fusion of critically shortened, uncapped telomeres rely on PCR assays that typically capture fusion breakpoints created by direct ligation of chromosome ends. Here we use independent approaches that rely on distinctive features of Caenorhabditis elegans to study the frequency of direct end-to-end chromosome fusion in telomerase mutants: (1) holocentric chromosomes that allow for genetic isolation of stable end-to-end fusions and (2) unique subtelomeric sequences that allow for thorough PCR analysis of samples of genomic DNA harboring multiple end-to-end fusions. Surprisingly, only a minority of end-to-end fusion events resulted from direct end joining with no additional genome rearrangements. We also demonstrate that deficiency for the C. elegans Ku DNA repair heterodimer does not affect telomere length or cause synthetic effects in the absence of telomerase.
Molecular and Cellular Biology | 2001
Bettina Meier; Lucia Driller; Sigrun Jaklin; Heidi Feldmann
ABSTRACT Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. AlthoughCDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, incdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tel1Δ double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y′ elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13p functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.
Current Biology | 2001
Bettina Meier; Shawn Ahmed
When meiotic cells complete S phase, homologous chromosomes pair, synapse and undergo recombination. A checkpoint protein is somehow required for meiotic chromosome pairing in C. elegans, thus providing a direct link between S phase and the rest of the meiotic program.
PLOS Genetics | 2016
Ye Hong; Remi Sonneville; Ana Agostinho; Bettina Meier; Bin Wang; J. Julian Blow; Anton Gartner
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.
Current Biology | 2006
Bettina Meier; Anton Gartner
Faithful recombination and chromosome segregation in meiosis require regulated steps of homolog recognition and association which are monitored by meiotic checkpoints. A recent study in the nematode Caenorhabditis elegans has identified a checkpoint mechanism that monitors chromosome pairing during meiosis.
Experimental Cell Research | 2014
Bettina Meier; Anton Gartner
Genetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis.