Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bettina Reglin is active.

Publication


Featured researches published by Bettina Reglin.


Hypertension | 2005

Remodeling of Blood Vessels: Responses of Diameter and Wall Thickness to Hemodynamic and Metabolic Stimuli

Axel R. Pries; Bettina Reglin; Timothy W. Secomb

Vascular functions, including tissue perfusion and peripheral resistance, reflect continuous structural adaptation (remodeling) of blood vessels in response to several stimuli. Here, a theoretical model is presented that relates the structural and functional properties of microvascular networks to the adaptive responses of individual segments to hemodynamic and metabolic stimuli. All vessels are assumed to respond, according to a common set of adaptation rules, to changes in wall shear stress, circumferential wall stress, and tissue metabolic status (indicated by partial pressure of oxygen). An increase in vessel diameter with increasing wall shear stress and an increase in wall mass with increased circumferential stress are needed to ensure stable vascular adaptation. The model allows quantitative predictions of the effects of changes in systemic hemodynamic conditions or local adaptation characteristics on vessel structure and on peripheral resistance. Predicted effects of driving pressure on the ratio of wall thickness to vessel diameter are consistent with experimental observations. In addition, peripheral resistance increases by ≈65% for an increase in driving pressure from 50 to 150 mm Hg. Peripheral resistance is predicted to be markedly increased in response to a decrease in vascular sensitivity to wall shear stress, and to be decreased in response to increased tissue metabolic demand. This theoretical approach provides a framework for integrating available information on structural remodeling in the vascular system and predicting responses to changing conditions or altered vascular reactivity, as may occur in hypertension.


Microcirculation | 2007

An Imaging Spectroscopy Approach for Measurement of Oxygen Saturation and Hematocrit During Intravital Microscopy

Beata Styp-Rekowska; N. Mecha Disassa; Bettina Reglin; L. Ulm; H. Kuppe; Timothy W. Secomb; Axel R. Pries

ABSTRACT


European Heart Journal | 2016

Coronary microcirculatory pathophysiology: can we afford it to remain a black box?

Axel R. Pries; Bettina Reglin

Abstract Coronary microvascular networks play the key role in determining blood flow distribution in the heart. Matching local blood supply to tissue metabolic demand entails continuous adaptation of coronary vessels via regulation of smooth muscle tone and structural dilated vessel diameter. The importance of coronary microcirculation for relevant pathological conditions including angina in patients with normal or near-normal coronary angiograms [microvascular angina (MVA)] and heart failure with preserved ejection fraction (HFpEF) is increasingly recognized. For MVA, clinical studies have shown a prevalence of up to 40% in patients with suspected coronary artery disease and a relevant impact on adverse cardiovascular events including cardiac death, stroke, and heart failure. Despite a continuously increasing number of corresponding clinical studies, the knowledge on pathophysiological cause–effect relations involving coronary microcirculation is, however, still very limited. A number of pathophysiological hypotheses for MVA and HFpEF have been suggested but are not established to a degree, which would allow definition of nosological entities, stratification of affected patients, or development of effective therapeutic strategies. This may be related to a steep decline in experimental (animal) pathophysiological studies in this area during the last 15 years. Since technology to experimentally investigate microvascular pathophysiology in the beating heart is increasingly, in principle, available, a concerted effort to build ‘coronary microcirculatory observatories’ to close this gap and to accelerate clinical progress in this area is suggested.


The International Journal of Developmental Biology | 2011

Modeling of angioadaptation: insights for vascular development

Axel R. Pries; Bettina Reglin; Timothy W. Secomb

Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution.


Journal of Vascular Research | 2014

Metabolic Control of Microvascular Networks: Oxygen Sensing and Beyond

Bettina Reglin; Axel R. Pries

The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O2) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decreasing) the release of vasodilatory (vasoconstricting) metabolic signal substances with decreasing partial pressure of O2. This review analyses the principles of metabolic vascular control with a focus on the prevailing feedback regulations. We propose the following hypotheses with respect to vessel diameter adaptation. (1) In addition to O2-dependent signaling, metabolic vascular regulation can be effected by signal substances produced independently of local oxygenation (reflecting the presence of cells) due to the dilution effect. (2) Control of resting vessel tone, and thus perfusion reserve, could be explained by a vascular activity/hypoxia memory. (3) Vasodilator but not vasoconstrictor signaling can prevent shunt perfusion via signal conduction upstream to feeding arterioles. (4) For low perfusion heterogeneity in the steady state, metabolic signaling from the vessel wall or a perivascular tissue sleeve is optimal. (5) For amplification of perfusion during transient increases of tissue demand, red blood cell-derived vasodilators or vasoconstrictors diluted in flowing blood may be relevant.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks

Qing Pan; Ruofan Wang; Bettina Reglin; Guolong Cai; Jing Yan; Axel R. Pries; Gangmin Ning

Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Structure and hemodynamics of vascular networks in the chorioallantoic membrane of the chicken

Martin Maibier; Bettina Reglin; Bianca Nitzsche; Weiwei Xiang; Wen Wei Rong; Björn Hoffmann; Valentin Djonov; Timothy W. Secomb; Axel R. Pries

The chick chorioallantoic membrane (CAM) is extensively used as an in vivo model. Here, structure and hemodynamics of CAM vessel trees were analyzed and compared with predictions of Murrays law. CAM microvascular networks of Hamburger-Hamilton stage 40 chick embryos were scanned by videomicroscopy. Three networks with ∼3,800, 580, and 480 segments were digitally reconstructed, neglecting the capillary mesh. Vessel diameters (D) and segment lengths were measured, and generation numbers and junctional exponents at bifurcations were derived. In selected vessels, flow velocities (v) and hematocrit were measured. Hemodynamic simulations, incorporating the branching of capillaries from preterminal vessels, were used to estimate v, volume flow, shear stress (τ), and pressure for all segments of the largest network. For individual arteriovenous flow pathways, terminal arterial and venous generation numbers are negatively correlated, leading to low variability of total topological and morphological pathway lengths. Arteriolar velocity is proportional to diameter (v∝D1.03 measured, v∝D0.93 modeling), giving nearly uniform τ levels (τ∝D0.05). Venular trees exhibit slightly higher exponents (v∝D1.3, τ∝D0.38). Junctional exponents at divergent and convergent bifurcations were 2.05 ± 1.13 and 1.97 ± 0.95 (mean ± SD) in contrast to the value 3 predicted by Murrays law. In accordance with Murrays law, τ levels are (nearly) maintained in CAM arterial (venular) trees, suggesting vascular adaptation to shear stress. Arterial and venous trees show an interdigitating arrangement providing homogeneous flow pathway properties and have preterminal capillary branches. These properties may facilitate efficient oxygen exchange in the CAM during rapid embryonic growth.


Bio-medical Materials and Engineering | 2014

Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization

Qing Pan; Ruofan Wang; Bettina Reglin; Luping Fang; Axel R. Pries; Gangmin Ning

Estimation of the boundary condition is a critical problem in simulating hemodynamics in microvascular networks. This paper proposed a boundary estimation strategy based on a particle swarm optimization (PSO) algorithm, which aims to minimize the number of vessels with inverted flow direction in comparison to the experimental observation. The algorithm took boundary values as the particle swarm and updated the position of the particles iteratively to approach the optimization target. The method was tested in a real rat mesenteric network. With random initial boundary values, the method achieved a minimized 9 segments with an inverted flow direction in the network with 546 vessels. Compared with reported literature, the current work has the advantage of a better fit with experimental observations and is more suitable for the boundary estimation problem in pulsatile hemodynamic models due to the experiment-based optimization target selection.


Microcirculation | 2017

Dynamic remodeling of arteriolar collaterals after acute occlusion in chick chorioallantoic membrane

Weiwei Xiang; Bettina Reglin; Bianca Nitzsche; Martin Maibier; Wen Wei Rong; Björn Hoffmann; Alfredo Ruggeri; Pedro Guimarães; Timothy W. Secomb; Axel R. Pries

After arteriolar occlusion, collaterals enlarge and initially elevated WSS normalizes. While most previous studies focused on endpoints of such adaptive changes in larger collaterals, the present investigation aimed to continuously determine the relation between WSS and diameter in microvascular collaterals during adaptive reactions.


Frontiers in Physiology | 2017

Structural Control of Microvessel Diameters: Origins of Metabolic Signals

Bettina Reglin; Timothy W. Secomb; Axel R. Pries

Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.

Collaboration


Dive into the Bettina Reglin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Pan

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge