Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betty Gardie is active.

Publication


Featured researches published by Betty Gardie.


Nature | 2011

A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma

Corine Bertolotto; Fabienne Lesueur; Sandy Giuliano; Thomas Strub; Mahaut de Lichy; Karine Bille; Philippe Dessen; Benoit d'Hayer; Hamida Mohamdi; Audrey Remenieras; Eve Maubec; Arnaud de la Fouchardière; Vincent Molinié; Pierre Vabres; Stéphane Dalle; Nicolas Poulalhon; Tanguy Martin-Denavit; Luc Thomas; Pascale Andry-Benzaquen; Nicolas Dupin; F. Boitier; Annick Rossi; Jean Luc Perrot; B. Labeille; Caroline Robert; Bernard Escudier; Olivier Caron; Laurence Brugières; Simon Saule; Betty Gardie

So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.


The New England Journal of Medicine | 2008

PHD2 Mutation and Congenital Erythrocytosis with Paraganglioma

Charline Ladroue; Romain Carcenac; Michel Leporrier; Sophie Gad; Françoise Galateau-Salle; Jean Feunteun; Jacques Pouysségur; Stéphane Richard; Betty Gardie

Prolyl hydroxylase domain (PHD) proteins play a major role in regulating the hypoxia-inducible factor (HIF) that induces expression of genes involved in angiogenesis, erythropoiesis, and cell metabolism, proliferation, and survival. Germ-line mutations in the prolyl hydroxylase domain 2 gene (PHD2) have been reported in patients with familial erythrocytosis but not in association with tumors. We describe a patient with erythrocytosis and recurrent paraganglioma who carries a newly discovered PHD2 mutation. This mutation affects PHD2 function and stabilizes HIF-alpha proteins. In addition, we demonstrate loss of heterozygosity of PHD2 in the tumor, suggesting that PHD2 could be a tumor-suppressor gene.


Journal of Medical Genetics | 2011

Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma

Betty Gardie; Audrey Remenieras; Darouna Kattygnarath; Johny Bombled; Sandrine Lefevre; Victoria Perrier-Trudova; Pierre Rustin; Michel Barrois; Abdelhamid Slama; M.-F. Avril; Didier Bessis; Olivier Caron; F. Caux; Patrick Collignon; Isabelle Coupier; Carol Cremin; Hélène Dollfus; Catherine Dugast; Bernard Escudier; Laurence Faivre; Michel Field; Brigitte Gilbert-Dussardier; Nicolas Janin; Yves Leport; Dominique Leroux; Dan Lipsker; Felicia Malthieu; Barbara McGilliwray; Christine Maugard; Arnaud Mejean

Background Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant disorder predisposing humans to cutaneous and uterine leiomyomas; in 20% of affected families, type 2 papillary renal cell cancers (PRCCII) also occur with aggressive course and poor prognosis. HLRCC results from heterozygous germline mutations in the tumour suppressor fumarate hydratase (FH) gene. Methods As part of the French National Cancer Institute (INCa) ‘Inherited predispositions to kidney cancer’ network, sequence analysis and a functional study of FH were preformed in 56 families with clinically proven or suspected HLRCC and in 23 patients with isolated PRCCII (5 familial and 18 sporadic). Results The study identified 32 different germline FH mutations (15 missense, 6 frameshifts, 4 nonsense, 1 deletion/insertion, 5 splice site, and 1 complete deletion) in 40/56 (71.4%) families with proven or suspected HLRCC and in 4/23 (17.4%) probands with PRCCII alone, including 2 sporadic cases. 21 of these were novel and all were demonstrated as deleterious by significant reduction of FH enzymatic activity. In addition, 5 asymptomatic parents in 3 families were confirmed as carrying disease-causing mutations. Conclusions This study identified and characterised 21 novel FH mutations and demonstrated that PRCCII can be the only one manifestation of HLRCC. Due to the incomplete penetrance of HLRCC, the authors propose to extend the FH mutation analysis to every patient with PRCCII occurring before 40 years of age or when renal tumour harbours characteristic histologic features, in order to discover previously ignored HLRCC affected families.


Cancer Research | 2014

ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy

Yosra Messai; Muhammad Zaeem Noman; Meriem Hasmim; Bassam Janji; Andrés Tittarelli; Marie Boutet; Véronique Baud; Elodie Viry; Katy Billot; Arash Nanbakhsh; Thouraya Ben Safta; Catherine Richon; Sophie Ferlicot; Emmanuel Donnadieu; Sophie Couvé; Betty Gardie; Florence Orlanducci; Laurence Albiges; Jerome Thiery; Daniel Olive; Bernard Escudier; Salem Chouaib

Clear cell renal cell carcinomas (RCC) frequently display inactivation of von Hippel-Lindau (VHL) gene leading to increased level of hypoxia-inducible factors (HIF). In this study, we investigated the potential role of HIF2α in regulating RCC susceptibility to natural killer (NK) cell-mediated killing. We demonstrated that the RCC cell line 786-0 with mutated VHL was resistant to NK-mediated lysis as compared with the VHL-corrected cell line (WT7). This resistance was found to require HIF2α stabilization. On the basis of global gene expression profiling and chromatin immunoprecipitation assay, we found ITPR1 (inositol 1,4,5-trisphosphate receptor, type 1) as a direct novel target of HIF2α and that targeting ITPR1 significantly increased susceptibility of 786-0 cells to NK-mediated lysis. Mechanistically, HIF2α in 786-0 cells lead to overexpression of ITPR1, which subsequently regulated the NK-mediated killing through the activation of autophagy in target cells by NK-derived signal. Interestingly, both ITPR1 and Beclin-1 silencing in 786-0 cells inhibited NK-induced autophagy and subsequently increased granzyme B activity in target cells. Finally, in vivo ITPR1 targeting significantly enhanced the NK-mediated tumor regression. Our data provide insight into the link between HIF2α, the ITPR1-related pathway, and natural immunity and strongly suggest a role for the HIF2α/ITPR1 axis in regulating RCC cell survival.


Seminars in Cancer Biology | 2013

Von Hippel-Lindau : How a rare disease illuminates cancer biology

Stéphane Richard; Betty Gardie; Sophie Couvé; Sophie Gad

Von Hippel-Lindau (VHL) disease is a rare autosomal dominant syndrome (1/36,000 live births) with highly penetrance that predispose to the development of a panel of highly vascularized tumors (model of tumoral angiogenesis). Main manifestations include central nervous system (CNS) and retinal haemangioblastomas, endolymphatic sac tumors, clear-cell renal cell carcinomas (RCC), phaeochromocytomas and pancreatic neuroendocrine tumors. RCC has become the first potential cause of mortality and VHL disease is the main cause of inherited RCC. The disease is caused by germline mutations in the VHL tumor-suppressor gene that plays a major role in regulation of the oxygen-sensing pathway by targeting the hypoxia-inducible factor HIF for degradation in proteasome. VHL has also major HIF-independent functions, specially in regulation of primary cilium, extracellular matrix and apoptosis. Somatic inactivation of the VHL gene is the main molecular event in most sporadic RCC and the treatment of advanced RCC has been revolutionized by targeted therapy with drugs that block angiogenesis. These drugs are now in first line in metastatic sporadic RCC and have shown promising results for RCC, pancreatic neuroendocrine tumors and malignant pheochromocytomas in VHL patients.


Human Mutation | 2014

Genetic basis of Congenital Erythrocytosis mutation update and online databases

Celeste Bento; Melanie J. Percy; Betty Gardie; Tabita M. Maia; Richard van Wijk; Silverio Perrotta; Fulvio Della Ragione; Helena Almeida; Cédric Rossi; François Girodon; Maria Åström; Drorit Neumann; Susanne Schnittger; Britta Landin; Milen Minkov; Maria Luigia Randi; Stéphane Richard; Nicole Casadevall; William Vainchenker; Susana Rives; Sylvie Hermouet; M. Letícia Ribeiro; Mary Frances McMullin; Holger Cario; Aurélie Chauveau; Anne-Paule Gimenez-Roqueplo; Brigitte Bressac-de-Paillerets; Didem Altindirek; Felipe Lorenzo; Frédéric Lambert

Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3‐bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr‐Euronet developed a comprehensive Internet‐based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database.


Genes & Cancer | 2013

Identification of TET1 Partners That Control Its DNA-Demethylating Function

Pierre-François Cartron; Arulraj Nadaradjane; Fiona LePape; Lisenn Lalier; Betty Gardie; François M. Vallette

Several recent reports have identified TET1 as the main enzyme modulating DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. However, little is known about the protein network that controls TET1 activity. By using a new proximity ligation in situ assay, we identified MeCP2, HDAC1/6/7, EZH2, mSin3A, PCNA, and LSD1 as TET1-interacting proteins. We also discerned that TET1/PCNA acts as a demethylator of the cyclical methylation/demethylation process, the perturbation of which promotes the aberrant methylation hallmarks frequently observed in cancer cells.


Haematologica | 2012

Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia

Charline Ladroue; David Hoogewijs; Sophie Gad; Romain Carcenac; Federica Storti; Michel Barrois; Anne-Paule Gimenez-Roqueplo; Michel Leporrier; Nicole Casadevall; Olivier Hermine; Jean-Jacques Kiladjian; André Baruchel; Fadi Fakhoury; Brigitte Bressac-de Paillerets; Jean Feunteun; Nathalie M. Mazure; Jacques Pouysségur; Roland H. Wenger; Stéphane Richard; Betty Gardie

Background Congenital secondary erythrocytoses are due to deregulation of hypoxia inducible factor resulting in overproduction of erythropoietin. The most common germline mutation identified in the hypoxia signaling pathway is the Arginine 200-Tryptophan mutant of the von Hippel-Lindau tumor suppressor gene, resulting in Chuvash polycythemia. This mutant displays a weak deficiency in hypoxia inducible factor α regulation and does not promote tumorigenesis. Other von Hippel-Lindau mutants with more deleterious effects are responsible for von Hippel-Lindau disease, which is characterized by the development of multiple tumors. Recently, a few mutations in gene for the prolyl hydroxylase domain 2 protein (PHD2) have been reported in cases of congenital erythrocytosis not associated with tumor formation with the exception of one patient with a recurrent extra-adrenal paraganglioma. Design and Methods Five PHD2 variants, four of which were novel, were identified in patients with erythrocytosis. These PHD2 variants were functionally analyzed and compared with the PHD2 mutant previously identified in a patient with polycythemia and paraganglioma. The capacity of PHD2 to regulate the activity, stability and hydroxylation of hypoxia inducible factor α was assessed using hypoxia-inducible reporter gene, one-hybrid and in vitro hydroxylation assays, respectively. Results This functional comparative study showed that two categories of PHD2 mutants could be distinguished: one category with a weak deficiency in hypoxia inducible factor α regulation and a second one with a deleterious effect; the mutant implicated in tumor occurrence belongs to the second category. Conclusions As observed with germline von Hippel-Lindau mutations, there are functional differences between the PHD2 mutants with regards to hypoxia inducible factor regulation. PHD2 mutation carriers do, therefore, need careful medical follow-up, since some mutations must be considered as potential candidates for tumor predisposition.


Familial Cancer | 2010

No evidence for a genetic modifier for renal cell cancer risk in HLRCC syndrome

Pia Vahteristo; Taru A. Koski; Laura Näätsaari; Maija Kiuru; Auli Karhu; Riitta Herva; Satu Leena Sallinen; Outi Vierimaa; Erik Björck; Stéphane Richard; Betty Gardie; D. Bessis; Emmanuel Van Glabeke; Ignacio Blanco; Richard S. Houlston; Leigha Senter; Marja Hietala; Kristiina Aittomäki; Lauri A. Aaltonen; Virpi Launonen; Rainer Lehtonen

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. Cutaneous and uterine leiomyomas are the most common clinical manifestations of HLRCC, whereas only approximately 20% of the families display renal cell cancer (RCC). The number of RCC cases in these families varies from one to five. Interestingly, families with multiple RCC cases are mainly found in Finland and the USA. Such aggregation of RCC in only some families and populations has led to the hypothesis that besides FH mutations also other inherited genetic and/or environmental factors may contribute to the malignant kidney tumor formation. To search for such a genetic modifier we have performed a genome-wide linkage analysis in two and an identical by descent analysis in four Finnish HLRCC families with several RCC patients. Additional Finnish and French families were used in fine-mapping and haplotype analyses. The only region compatible with linkage was the locus surrounding the FH gene itself in chromosome 1q43. The genes in the putative candidate region were screened, but no potentially pathogenic alterations were observed. Although these data do not rule out the existence of a genetic modifier, they emphasize the contribution of the FH genotype in HLRCC related RCC. Therefore, as all FH mutation carriers may have an increased risk for developing renal cancer, counseling and genetic testing should be offered for all HLRCC family members and clinical follow-up should be organized for the mutation carriers.


Journal of Immunology | 2002

Transgenic Expression of the p16INK4a Cyclin-Dependent Kinase Inhibitor Leads to Enhanced Apoptosis and Differentiation Arrest of CD4−CD8− Immature Thymocytes

Chantal Lagresle; Betty Gardie; Stéphanie Eyquem; Magali Fasseu; Jean-Claude Vieville; Marika Pla; François Sigaux; Jean-Christophe Bories

In the thymus, T cell development proceeds by successive steps of differentiation, expansion, and selection. Control of thymocyte proliferation is critical to insure the full function of the immune system and to prevent T cells from transformation. Deletion of the cell cycle inhibitor p16INK4a is frequently observed in human T cell neoplasias and, in mice, gene targeted inactivation of the Ink4a locus enhances thymocyte expansion and predisposes mutant animal to tumorigenesis. Here, we investigate the mechanism by which p16Ink4a controls thymocyte development by analyzing transgenic mice expressing the human p16INK4a into the T cell lineage. We show that forced expression of p16INK4a in thymocytes blocked T cell differentiation at the early CD4−CD8−CD3−CD25+ stage without significantly affecting the development of γδ T cells. Pre-TCR function was mimicked by the induction of CD3 signaling in thymocytes of recombinase activating gene (RAG)-2-deficient mice (RAG-2−/−). Upon anti-CD3ε treatment in vivo, p16INK4a-expressing RAG-2−/− thymocytes were not rescued from apoptosis, nor could they differentiate. Our data demonstrate that expression of p16INK4a prevents the pre-TCR-mediated expansion and/or survival of differentiating thymocytes.

Collaboration


Dive into the Betty Gardie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Bessis

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge