Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betty S. Pace is active.

Publication


Featured researches published by Betty S. Pace.


The International Journal of Neuropsychopharmacology | 2015

Ethanol Exposure Induces Neonatal Neurodegeneration by Enhancing CB1R Exon1 Histone H4K8 Acetylation and Up-regulating CB1R Function causing Neurobehavioral Abnormalities in Adult Mice

Shivakumar Subbanna; Nagaraja N. Nagre; Nagavedi S. Umapathy; Betty S. Pace; Balapal S. Basavarajappa

Background: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. Methods: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. Results: We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. Conclusions: Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.


PLOS Genetics | 2015

UFBP1, a Key Component of the Ufm1 Conjugation System, Is Essential for Ufmylation-Mediated Regulation of Erythroid Development.

Yafei Cai; Wenhu Pi; Satish Sivaprakasam; Xiaobin Zhu; Mingsheng Zhang; Jijun Chen; Levi Makala; Chunwan Lu; Jianchu Wu; Yong Teng; Betty S. Pace; Dorothy Tuan; Nagendra Singh; Honglin Li

The Ufm1 conjugation system is an ubiquitin-like modification system that consists of Ufm1, Uba5 (E1), Ufc1 (E2), and less defined E3 ligase(s) and targets. The biological importance of this system is highlighted by its essential role in embryogenesis and erythroid development, but the underlying mechanism is poorly understood. UFBP1 (Ufm1 binding protein 1, also known as DDRGK1, Dashurin and C20orf116) is a putative Ufm1 target, yet its exact physiological function and impact of its ufmylation remain largely undefined. In this study, we report that UFBP1 is indispensable for embryonic development and hematopoiesis. While germ-line deletion of UFBP1 caused defective erythroid development and embryonic lethality, somatic ablation of UFBP1 impaired adult hematopoiesis, resulting in pancytopenia and animal death. At the cellular level, UFBP1 deficiency led to elevated ER (endoplasmic reticulum) stress and activation of unfolded protein response (UPR), and consequently cell death of hematopoietic stem/progenitor cells. In addition, loss of UFBP1 suppressed expression of erythroid transcription factors GATA-1 and KLF1 and blocked erythroid differentiation from CFU-Es (colony forming unit-erythroid) to proerythroblasts. Interestingly, depletion of Uba5, a Ufm1 E1 enzyme, also caused elevation of ER stress and under-expression of erythroid transcription factors in erythroleukemia K562 cells. By contrast, knockdown of ASC1, a newly identified Ufm1 target that functions as a transcriptional co-activator of hormone receptors, led to down-regulation of erythroid transcription factors, but did not elevate basal ER stress. Furthermore, we found that ASC1 was associated with the promoters of GATA-1 and Klf1 in a UFBP1-dependent manner. Taken together, our findings suggest that UFBP1, along with ASC1 and other ufmylation components, play pleiotropic roles in regulation of hematopoietic cell survival and differentiation via modulating ER homeostasis and erythroid lineage-specific gene expression. Modulating the activity of this novel ubiquitin-like system may represent a novel approach to treat blood-related diseases such as anemia.


Hematology-oncology Clinics of North America | 2014

Targeted Fetal Hemoglobin Induction for Treatment of Beta Hemoglobinopathies

Susan P. Perrine; Betty S. Pace; Douglas V. Faller

Fetal globin (gamma globin; HBG) is normally expressed during fetal life and prevents the clinical manifestations of beta hemoglobinopathies before birth. HBG genes are normally integrated in hematopoietic stem cells in all humans, and are at least partially amenable to reactivation. Inducing expression of fetal globin (HBG) gene expression to 60% to 70% of alpha globin synthesis produces a β-thalassemia trait phenotype, and reduces anemia. Tailoring combinations of therapeutics to patient subsets characterized for quantitative trait loci which modulate basal fetal hemoglobin and erythroid cell survival should provide effective amelioration of clinical symptoms in β-thalassemia and sickle cell disease.


Investigative Ophthalmology & Visual Science | 2014

Monomethylfumarate Induces γ-Globin Expression and Fetal Hemoglobin Production in Cultured Human Retinal Pigment Epithelial (RPE) and Erythroid Cells, and in Intact Retina

Wanwisa Promsote; Levi Makala; Biaoru Li; Sylvia B. Smith; Nagendra Singh; Vadivel Ganapathy; Betty S. Pace; Pamela M. Martin

PURPOSE Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. METHODS Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. RESULTS Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. CONCLUSIONS The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment.


BMC Genomics | 2012

Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

Biaoru Li; Lianghao Ding; Wei Li; Michael D. Story; Betty S. Pace

BackgroundThe fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation.ResultsWe confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified.The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways.ConclusionsThe transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.


PLOS ONE | 2014

A Cell-Based High-Throughput Screen for Novel Chemical Inducers of Fetal Hemoglobin for Treatment of Hemoglobinopathies

Kenneth R. Peterson; Flavia C Costa; Halyna Fedosyuk; Renee Neades; Allen M. Chazelle; Lesya Zelenchuk; Andrea H. Fonteles; Parmita Dalal; Anuradha Roy; Rathnam Chaguturu; Biaoru Li; Betty S. Pace

Decades of research have established that the most effective treatment for sickle cell disease (SCD) is increased fetal hemoglobin (HbF). Identification of a drug specific for inducing γ-globin expression in pediatric and adult patients, with minimal off-target effects, continues to be an elusive goal. One hurdle has been an assay amenable to a high-throughput screen (HTS) of chemicals that displays a robust γ-globin off-on switch to identify potential lead compounds. Assay systems developed in our labs to understand the mechanisms underlying the γ- to β-globin gene expression switch during development has allowed us to generate a cell-based assay that was adapted for a HTS of 121,035 compounds. Using chemical inducer of dimerization (CID)-dependent bone marrow cells (BMCs) derived from human γ-globin promoter-firefly luciferase β-globin promoter-Renilla luciferase β-globin yeast artificial chromosome (γ-luc β-luc β-YAC) transgenic mice, we were able to identify 232 lead chemical compounds that induced γ-globin 2-fold or higher, with minimal or no β-globin induction, minimal cytotoxicity and that did not directly influence the luciferase enzyme. Secondary assays in CID-dependent wild-type β-YAC BMCs and human primary erythroid progenitor cells confirmed the induction profiles of seven of the 232 hits that were cherry-picked for further analysis.


Annals of Human Genetics | 2014

Global Genetic Architecture of an Erythroid Quantitative Trait Locus, HMIP-2

Stephan Menzel; Helen Rooks; Diana Zelenika; Siana Nkya Mtatiro; Akshala Gnanakulasekaran; Emma Drasar; Sharon E. Cox; Li Liu; Mariam Masood; Nicholas Silver; Chad Garner; Nisha Vasavda; Jo Howard; Julie Makani; Adekunle D. Adekile; Betty S. Pace; Tim D. Spector; Martin Farrall; Mark Lathrop; Swee Lay Thein

HMIP‐2 is a human quantitative trait locus affecting peripheral numbers, size and hemoglobin composition of red blood cells, with a marked effect on the persistence of the fetal form of hemoglobin, HbF, in adults. The locus consists of multiple common variants in an enhancer region for MYB (chr 6q23.3), which encodes the hematopoietic transcription factor cMYB. Studying a European population cohort and four African‐descended groups of patients with sickle cell anemia, we found that all share a set of two spatially separate HbF‐promoting alleles at HMIP‐2, termed “A” and “B.” These typically occurred together (“A–B”) on European chromosomes, but existed on separate homologous chromosomes in Africans. Using haplotype signatures for “A” and “B,” we interrogated public population datasets. Haplotypes carrying only “A” or “B” were typical for populations in Sub‐Saharan Africa. The “A–B” combination was frequent in European, Asian, and Amerindian populations. Both alleles were infrequent in tropical regions, possibly undergoing negative selection by geographical factors, as has been reported for malaria with other hematological traits. We propose that the ascertainment of worldwide distribution patterns for common, HbF‐promoting alleles can aid their further genetic characterization, including the investigation of gene–environment interaction during human migration and adaptation.


Experimental Biology and Medicine | 2015

Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease:

Betty S. Pace; Li Liu; Biaoru Li; Levi Makala

The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.


Experimental Biology and Medicine | 2016

Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine

Steven R. Goodman; Betty S. Pace; Kirk C. Hansen; Angelo D’Alessandro; Yang Xia; Ovidiu Daescu; Stephen J. Glatt

In this review, we provide a description of those candidate biomarkers which have been demonstrated by multiple-omics approaches to vary in correlation with specific clinical manifestations of sickle cell severity. We believe that future clinical analyses of severity phenotype will require a multiomic analysis, or an omics stack approach, which includes integrated interactomics. It will also require the analysis of big data sets. These candidate biomarkers, whether they are individual or panels of functionally linked markers, will require future validation in large prospective and retrospective clinical studies. Once validated, the hope is that informative biomarkers will be used for the identification of individuals most likely to experience severe complications, and thereby be applied for the design of patient-specific therapeutic approaches and response to treatment. This would be the beginning of precision medicine for sickle cell disease.


Anemia | 2012

Sickle Cell Disease: Genetics, Cellular and Molecular Mechanisms, and Therapies

Betty S. Pace; Solomon F. Ofori-Acquah; Kenneth R. Peterson

Sickle cell disease (SCD) is a global public health disorder that affects millions of people across the globe. It is a monogenic disorder caused by an A-to-T point mutation in the β-globin gene that produces abnormal hemoglobin S (Hb S), which polymerizes in the deoxygenated state, resulting in physical deformation or sickling of erythrocytes. Sickle erythrocytes promote vaso-occlusion and hemolysis, which are two major cellular hallmarks of the disease. Rapid advances made in understanding the molecular genetics of SCD in the early part of the 20th century have not been matched by comparable progress towards understanding its clinical complications, and developing effective therapies. Contemporary reevaluation of SCD as the product of multiple gene interactions promises to overcome the historical constraints of the single-gene disease paradigm that has inevitably impeded translation of research discoveries into clinical benefit. Two landmark papers in the late 1940s by the Nobel laureates Linus Pauling and Janet Watson provided the molecular bases for SCD and a rational strategy to treat the disease. The publication by Pauling et al., Sickle Cell Anemia, a Molecular Disease, in Nature in 1949 established SCD as the first molecular human disease, and it established the inheritance pattern of the disorder and of monogenic diseases generally. In addition, that seminal work laid the foundation for the explosion of knowledge in human molecular genetics decades later that gave birth to a new discipline called gene therapy. The publication by Watson The Significance of the Paucity of Sickle Cells in Negro Infants provided the concept that fetal hemoglobin (Hb F) ameliorates the clinical presentation of SCD for the first time in 1948, ushering in one of the most intensely studied areas of SCD research. Advancements in Genetics, Cellular and Molecular Mechanisms, and Therapy of SCD in the two decades following the seminal works by Pauling and Watson were driven primarily by studies on the erythrocyte, involving polymerization of Hb S and antisickling hemoglobin variants, rheology, and red cell membrane. A highlight amongst these studies was the landmark work by Kan and Dozy published in the article DNA Sequence Adjacent to the Human Beta-Globin Structural Gene: Relationship to Sickle Mutation. That study described the presence of single-nucleotide polymorphisms in the human genome for the first time, and it initiated a new avenue of research that led to the discovery of the multicentric origin of the sickle mutation, and it laid the foundations for genetic association studies in SCD, which are currently a major focus of several investigations. The scope of SCD research expanded beyond the erythrocyte in the 1980s to encompass vascular biology, notably the endothelium, coagulation, and inflammation. Twenty years later, the most compelling evidence that these factors play a critical role in the pathogenesis of SCD is the demonstration that tumor necrosis factor induced adhesion of leukocytes to the vascular endothelium provides the initial cellular events of vaso-occlusion in a mouse model of SCD. Paradigm-shifting insights into the mechanisms of globin gene expression spearheaded by the discovery of the locus control region (LCR) by two groups in the 1990s heralded a new era in SCD research. First, these insights helped to create developmentally regulated and clinically relevant transgenic mouse models of SCD. Second, they permitted the development of efficacious DNA vectors for gene therapy of SCD that continue to improve as novel elements of gene delivery systems become available and are incorporated into newer generation vectors. The current special issue of Anemia contains original research articles about progress made towards Hb F induction using novel pharmacological agents and artificial zinc finger transcription factors, and a web-based tool to evaluate adherence to hydroxyurea therapy. The latter tool represents efforts to integrate new technology to improve the clinical care of individuals with SCD. Also included in this issue is the first report from a Congolese group of the association of Hb F levels with clinical severity in this population. Several articles report alteration in redox environment and link this phenomenon to impaired hematopoietic progenitor and stem cell function improved by treatment with n-acetyl cysteine in transgenic SCD mice, reduced migration of endothelial progenitors cells derived from children who have SCD, and lastly an association of oxidative stress markers with an atherogenic index in adults with sickle nephropathy. What is known about the deleterious effects of sickling on the genitourinary tract and the role of cyclic nucleotide signaling is reviewed. Finally, articles report two endothelial dysfunction including increased activity of the elastase cathepsin K, and age-dependent increase, in vascular permeability, that culminates in pulmonary edema in middle-aged SCD mice. The wide variety of experimental studies in this special issue represents potentially new therapeutic tools, ranging from novel approaches for Hb F induction, improved stem cell function and a biomarker to predict risk for SCD nephropathy. Furthermore, the findings of endothelial dysfunction via upregulated cathepsin activity may represent a new pharmacologic target to block accelerated arterial disease observed in children with SCD. The reports in this issue will aid research efforts to close the gap between understanding SCD genetics and developing effective new clinical care approaches and therapeutic options. Betty S. Pace Solomon F. Ofori-Acquah Kenneth R. Peterson

Collaboration


Dive into the Betty S. Pace's collaboration.

Top Co-Authors

Avatar

Biaoru Li

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Levi Makala

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Li Liu

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna B. Jeffe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Treva Rice

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dabeeru C. Rao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gary L. White

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge