Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Betul Catalgol is active.

Publication


Featured researches published by Betul Catalgol.


Frontiers in Pharmacology | 2012

Resveratrol: French Paradox Revisited

Betul Catalgol; Saime Batirel; Yavuz Taga; Nesrin Kartal Ozer

Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed.


Free Radical Biology and Medicine | 2011

HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress.

Tilman Grune; Betul Catalgol; Anke Licht; Gennady Ermak; Andrew M. Pickering; Jenny K. Ngo; Kelvin J.A. Davies

We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3h after mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly(ADP ribose) polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provide cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24h after stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation. During this adaptive period, HSP70 releases its bound 19S regulators, 26S proteasomes are reconstituted, and ATP-stimulated proteolysis is restored. The 26S proteasome-dependent, and ATP-stimulated, turnover of ubiquitinylated proteins is essential for normal cell metabolism, and its restoration is required for successful stress adaptation.


Molecular Aspects of Medicine | 2014

Protein damage, repair and proteolysis.

Niki Chondrogianni; Isabelle Petropoulos; Stefanie Grimm; Konstantina Georgila; Betul Catalgol; Bertrand Friguet; Tilman Grune; Efstathios S. Gonos

Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.


Free Radical Biology and Medicine | 2011

Lipofuscin inhibits the proteasome by binding to surface motifs.

Annika Höhn; Tobias Jung; Stefanie Grimm; Betul Catalgol; Daniela Weber; Tilman Grune

Lipofuscin, a highly oxidized aggregate, consists of covalently cross-linked proteins, lipids, and sugar residues and is one of the major life-span-limiting factors in postmitotic aging cells. An artificial model of this material, showing characteristics and effects comparable to those of the natural form, has turned out to be very useful for in vitro studies. Artificial lipofuscin was used to investigate its effects on the viability of human fibroblasts, its rate of uptake, and its ability to inhibit the proteasomal system. The inhibition of the proteasomal system is one of the major aspects of the cytotoxic effects of lipofuscin. We present here that this proteasomal inhibition is due to proteasomal binding to the lipofuscin surface motifs, degradable by protease K. Furthermore, removal of the surface peptide structures by protease K strongly reduces the cytotoxic effects of lipofuscin and binding of cellular proteins and proteasomes to intracellular protein aggregates.


Journal of Biological Chemistry | 2009

The Proteasome Is an Integral Part of Solar Ultraviolet A Radiation-induced Gene Expression

Betul Catalgol; Nicolle Breusing; Tobias Jung; Annika Höhn; Buket Alpertunga; Peter Schroeder; Niki Chondrogianni; Efstathios S. Gonos; Isabelle Petropoulos; Bertrand Friguet; Lars-Oliver Klotz; Jean Krutmann; Tilman Grune

Solar ultraviolet (UV) A radiation is a well known trigger of signaling responses in human skin fibroblasts. One important consequence of this stress response is the increased expression of matrix metalloproteinase-1 (MMP-1), which causes extracellular protein degradation and thereby contributes to photoaging of human skin. In the present study we identify the proteasome as an integral part of the UVA-induced, intracellular signaling cascade in human dermal fibroblasts. UVA-induced singlet oxygen formation was accompanied by protein oxidation, the cross-linking of oxidized proteins, and an inhibition of the proteasomal system. This proteasomal inhibition subsequently led to an accumulation of c-Jun and phosphorylated c-Jun and activation of activator protein-1, i.e. transcription factors known to control MMP-1 expression. Increased transcription factor activation was also observed if the proteasome was inhibited by cross-linked proteins or lactacystin, indicating a general mechanism. Most importantly, inhibition of the proteasome was of functional relevance for UVA-induced MMP-1 expression, because overexpression of the proteasome or the protein repair enzyme methionine sulfoxide reductase prevented the UVA-induced induction of MMP-1. These studies show that an environmentally relevant stimulus can trigger a signaling pathway, which links intracellular and extracellular protein degradation. They also identify the proteasome as an integral part of the UVA stress response.


Food and Chemical Toxicology | 2009

Methiocarb-induced oxidative damage following subacute exposure and the protective effects of vitamin E and taurine in rats

Sibel Ozden; Betul Catalgol; Selda Gezginci-Oktayoglu; Pelin Arda-Pirincci; Sehnaz Bolkent; Buket Alpertunga

Methiocarb, is used worldwide in agriculture and health programs. Besides its advantages in the agriculture, it causes several toxic effects. In this study, we aimed to investigate subacute effects of methiocarb on lipid peroxidation, reduced glutathione (GSH), antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) and histopathological changes in rat tissues. Moreover, we examined the possible protective effects of vitamin E and taurine on methiocarb-induced oxidative damage in rat tissues. Rats were randomly divided into six groups as follows; I-control group; II-methiocarb group; III-vitamin E group; IV-vitamin E+methiocarb group; V-taurine group and VI-taurine+methiocarb group. Methiocarb significantly increased lipid peroxidation in liver and kidney when compared to control groups. Levels of GSH and activities of SOD, CAT and GSH-Px were found to be decreased, while GSH-Rd remained unchanged in rat liver and kidney treated with methiocarb. Pretreatment of vitamin E and taurine resulted in a significant decrease on lipid peroxidation, alleviating effects on GSH and antioxidant enzymes. The degenerative histological changes were less in liver than kidney of rats treated with methiocarb. Pretreatment of vitamin E and taurine showed a protective effect on the histological changes in kidney comparing to the liver of rats treated with methiocarb.


Free Radical Biology and Medicine | 2012

Cathepsins D and L reduce the toxicity of advanced glycation end products

Stefanie Grimm; Melanie Hörlacher; Betul Catalgol; Annika Hoehn; Thomas Reinheckel; Tilman Grune

Advanced glycation end product-modified proteins are known for accumulating during aging and in several pathological conditions such as diabetes, renal failure, and neurodegenerative disorders. There is little information about the intracellular fate of endocytosed advanced glycation end products (AGEs) and their influence on proteolytic systems. However, it is known that the lysosomal system is impaired during aging. Therefore, undegraded material may accumulate and play a considerable role in the development of diverse diseases. To investigate if AGEs can be degraded and to test whether they accumulate because of impaired lysosomal proteases we studied the effects of advanced glycation end products on the endosomal-lysosomal system. Five different types of AGEs were generated by bovine serum albumin incubation with glyoxal, methylglyoxal, glucose, fructose, and ribose. The first experiments revealed the uptake of AGEs by the macrophage cell line RAW 264.7. Further investigations demonstrated an increase in cathepsin D and L activity and an increase in mature cathepsins D and L. Increased activities were accompanied by the presence of more lysosomes, measured by staining with LysoTracker blue. To specify the roles of cathepsins D and L we used knockout cells to test the roles of both cathepsins on the toxicity of advanced glycation end products. In summary we conclude that both cathepsins are required for a reduction in advanced glycation end product-induced cytotoxicity.


Human & Experimental Toxicology | 2009

Acrylamide-induced oxidative stress in human erythrocytes

Betul Catalgol; Gül Özhan; Buket Alpertunga

Acrylamide (AA), a widely used industrial chemical, is shown to be neurotoxic, mutagenic and carcinogenic. This study was carried out to investigate the effects of different doses of AA on lipid peroxidation (LPO), haemolysis, methaemoglobin (MetHb) and antioxidant system in human erythrocytes in vitro. Erythrocyte solutions were incubated with 0.10, 0.25, 0.50 and 1.00 mM of AA at 37°C for 1 hour. At the end of the incubation, malondialdehyde (MDA), an end product of LPO, was determined by liquid chromatography (LC) while total glutathione, reduced glutathione (GSH) levels, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzymes and the rates of haemolysis and MetHb were determined by spectrophotometric methods. All of the studied concentrations of AA increased MetHb formation and SOD activity, and induced MDA formation and haemolysis due to the destruction of erythrocyte cell membrane. AA caused a decrease in the activities of GSH-Px, CAT and GSH levels. However, these effects of AA were seen only at higher concentrations than AA intake estimated for populations in many countries. We suggest that LPO process may not be involved in the toxic effects of AA in low concentrations, although the present results showed that the studied concentrations of AA exert deteriorating effects on antioxidant enzyme activities, LPO process and haemolysis.


Free Radical Biology and Medicine | 2011

Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity

Edina Bakondi; Betul Catalgol; Istvan Bak; Tobias Jung; Perinur Bozaykut; Mehmet Bayramiçli; Nesrin Kartal Ozer; Tilman Grune

Changes in protein turnover are among the dominant metabolic changes during aging. Of special importance is the maintenance of nuclear protein homeostasis to ensure a coordinated cellular metabolism. Therefore, in the nucleus a special PARP-1-mediated mechanism of proteasomal activation exists to ensure a rapid degradation of oxidized nuclear proteins. It was already demonstrated earlier that the cytosolic proteasomal system declines dramatically with aging, whereas the nuclear proteasome remains less affected. We demonstrate here that the stress-mediated proteasomal activation in the nucleus declines during replicative senescence of human fibroblasts. Furthermore, we clearly show that this decline in the PARP-1-mediated proteasomal activation is due to a decline in the expression and activity of PARP-1 in senescent fibroblasts. In a final study we show that this process also happens in vivo, because the protein expression level of PARP-1 is significantly lower in the skin of aged donors compared to that of young ones. Therefore, we conclude that the rate-limiting factor in poly(ADP-ribose)-mediated proteasomal activation in oxidative stress is PARP-1 and not the nuclear proteasome itself.


Current Cardiology Reviews | 2010

Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis.

Betul Catalgol; Nesrin Kartal Ozer

Redox mediated signaling mechanisms play crucial roles in the pathogenesis of several cardiovascular diseases. Atherosclerosis is one of the most important disorders induced mainly by hypercholesterolemia. Oxidation products and related signaling mechanisms are found within the characteristic biomarkers of atherosclerosis. Several studies have shown that redox signaling via lipid rafts play a significant role in the regulation of pathogenesis of many diseases including atherosclerosis. This review attempts to summarize redox signaling and lipid rafts in hypercholesterolemia induced atherosclerosis.

Collaboration


Dive into the Betul Catalgol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge