Betzabet Quintanilla-Vega
CINVESTAV
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Betzabet Quintanilla-Vega.
Antioxidants & Redox Signaling | 2014
Juliana Navarro-Yepes; Michaela Burns; Annadurai Anandhan; Oleh Khalimonchuk; Luz M. Del Razo; Betzabet Quintanilla-Vega; Aglaia Pappa; Mihalis I. Panayiotidis; Rodrigo Franco
SIGNIFICANCE The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). RECENT ADVANCES To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. CRITICAL ISSUES In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. FUTURE DIRECTIONS Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders.
Frontiers in Cellular Neuroscience | 2015
Miguel Chin-Chan; Juliana Navarro-Yepes; Betzabet Quintanilla-Vega
Neurodegenerative diseases including Alzheimer (AD) and Parkinson (PD) have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment as a putative risk factor has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ) peptide and the phosphorylation of Tau protein (P-Tau), causing senile/amyloid plaques and neurofibrillary tangles (NFTs) characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn), which is a key constituent of Lewy bodies (LB), a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzyme (IDE)s such as neprilysin or insulin IDE. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.
Reproductive Toxicology | 2008
Elsa Salazar-Arredondo; M.J. Solís-Heredia; Elizabeth Rojas-García; Isabel Hernández-Ochoa; Betzabet Quintanilla-Vega
Extensive use of organophosphorous pesticides (OP) by young men represents a public health problem. Toxicity of OP mainly results in neurotoxicity due to their oxygen analogues (oxons), formed during the OP oxidative activation. OP alter semen quality and sperm chromatin and DNA at different stages of spermatogenesis. Oxons are more toxic than the parent compounds; however, their toxicity to spermatogenic cells has not been reported. We evaluated sperm DNA damage by several OP compounds and their oxons in human spermatozoa from healthy volunteers incubated with 50-750 microM of methyl-parathion (MePA), methyl-paraoxon (MePO), chlorpyrifos (CPF), chlorpyrifos-oxon (CPO), diazinon (DZN) or diazoxon (DZO). All concentrations were not cytotoxic (evaluated by eosin-Y exclusion), except 750 microM MePO. Oxons were 15% to 10 times more toxic to sperm DNA (evaluated by the SCSA parameter, %DFI) than their corresponding parent compounds, at the following order: MePO>CPO=MePA>CPF>DZO>DZN, suggesting that oxon metabolites participate in OP sperm genotoxicity.
American Journal of Industrial Medicine | 2000
Betzabet Quintanilla-Vega; Dennis Hoover; Wojciech Bal; Ellen K. Silbergeld; Michael P. Waalkes; Larry D. Anderson
BACKGROUND Lead impairs male fertility and may affect offspring of exposed males, but the mechanisms for this impairment are not completely clear. Protamine P1 and P2 families pack and protect mammalian sperm DNA. Human HP2 is a zinc-protein and may have an important role in fertility. As lead has affinity for zinc-containing proteins, we evaluated its ability in vitro to bind to HP2 and its effects on HP2-DNA binding. Methods and Results UV/VIS spectroscopic data indicated that HP2 binds both Pb(2+) and Zn(2+)(as chloride salts). They also provided evidence that thiol groups mainly participate for Zn(2+)-binding; however, HP2 has additional binding sites for Pb(2+). The mobility shift assay showed that lead interaction with HP2 caused a dose-dependent decrease on HP2 binding to DNA, suggesting that lead may alter chromatin stability. CONCLUSIONS These in vitro results demonstrate that lead can interact with HP2 altering the DNA-protamine binding. This chemical interaction of lead with protamines may result in chromatin alterations, which in turn may lead to male fertility problems and eventually to DNA damage.
Pharmacology & Therapeutics | 2014
Juliana Navarro-Yepes; Laura Zavala-Flores; Annadurai Anandhan; Fang Wang; Maciej Skotak; Namas Chandra; Ming Li; Aglaia Pappa; Daniel Martinez-Fong; Luz M. Del Razo; Betzabet Quintanilla-Vega; Rodrigo Franco
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimers disease, Parkinsons disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012
Marco Sanchez-Guerra; Nadia Pelallo-Martínez; Fernando Díaz-Barriga; Stephen J. Rothenberg; Leticia Hernández-Cadena; Sylvain Faugeron; Luis F. Oropeza-Hernández; Margarita Guaderrama-Díaz; Betzabet Quintanilla-Vega
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants presenting a public health risk, particularly to children, a vulnerable population. PAHs have genotoxic and carcinogenic properties, which depend on their metabolism. Many enzymes involved in PAH metabolism, including CYP1A1, CYP1B1, GSTM and GSTT are polymorphic, which may modulate the activation/deactivation of these compounds. We evaluated PAH exposure and DNA damage in children living in the vicinity of the main petrochemical complex located in the Gulf of Mexico, and explored the modulation by genetic polymorphisms of PAH excretion and related DNA damage. The participants (n=82) were children aged 6-10y attending schools near the industrial area. Urinary 1-hydroxypyrene (1-OHP; a biomarker of PAH exposure) was determined by reverse-phase-HPLC; DNA damage by the comet assay (Olive Tail Moment (OTM) parameter); CYP1A1*2C and CYP1B1*3 polymorphisms by real time-PCR; and GSTM1*0 and GSTT1*0 by multiplex PCR. The median value of 1-OHP was 0.37μmol/mol creatinine; 59% of children had higher 1-OHP concentrations than those reported in environmentally exposed adults (0.24μmol/mol creatinine). A stratified analysis showed increased DNA damage in children with 1-OHP concentrations greater than the median value. We observed higher 1-OHP concentrations in children with CYP1A1*2C or GSTM1*0 polymorphisms, and a positive influence of CYP1A1*2C on OTM values in children with the highest PAH exposure. The data indicate that children living in the surroundings of petrochemical industrial areas are exposed to high PAH levels, contributing to DNA damage and suggesting an increased health risk; furthermore, data suggest that polymorphisms affecting activation enzymes may modulate PAH metabolism and toxicity.
Toxicology and Applied Pharmacology | 2009
B. Piña-Guzmán; Manuel Sánchez-Gutiérrez; Francesco Marchetti; Isabel Hernández-Ochoa; M.J. Solís-Heredia; Betzabet Quintanilla-Vega
Paternal germline exposure to organophosphorous pesticides (OP) has been associated with reproductive failures and adverse effects in the offspring. Methyl-parathion (Me-Pa), a worldwide-used OP, has reproductive adverse effects and is genotoxic to sperm, possibly via oxidative damage. This study investigated the stages of spermatogenesis susceptible to be targeted by Me-Pa exposure that impact on spermatozoa function and their ability to fertilize. Male mice were exposed to Me-Pa (20 mg/kg bw, i.p.) and spermatozoa from epididymis-vas deferens were collected at 7 or 28 days post-treatment (dpt) to assess the effects on maturing spermatozoa and spermatocytes, respectively. Spermatozoa were examined for DNA damage by nick translation (NT-positive cells) and SCSA (%DFI), lipoperoxidation (LPO) by malondialdehyde production, sperm function by spontaneous- and induced-acrosome reactions (AR), mitochondrial membrane potential (MMP) by using the JC-1 fluorochrome, and fertilization ability by an in vitro assay and in vivo mating. Alterations on DNA integrity (%DFI and NT-positive cells) in spermatozoa collected at 7 and 28 dpt, and decreases in sperm quality and induced-AR were observed; reduced MMP and LPO were observed at 7 dpt only. Negative correlations between LPO and sperm alterations were found. Altered sperm functional parameters evaluated either in vitro or in vivo were associated with reduced fertilization rates at both times. These results show that Me-Pa exposure of maturing spermatozoa and spermatocytes affects many sperm functional parameters that result in a decreased fertilizing capacity. Oxidative stress seems to be a likely mechanism of the detrimental effects of Me-Pa exposure in male germ cells.
Toxicology and Applied Pharmacology | 2009
Aris Polyzos; Thomas Ernst Schmid; B. Piña-Guzmán; Betzabet Quintanilla-Vega; Francesco Marchetti
Cigarette smoking in men has been associated with increased chromosomal abnormalities in sperm and with increased risks for spontaneous abortions, birth defects and neonatal death. Little is known, however, about the reproductive consequences of paternal exposure to second-hand smoke. We used a mouse model to investigate the effects of paternal exposure to sidestream (SS) smoke, the main constituent of second-hand smoke, on the genetic integrity and function of sperm, and to determine whether male germ cells were equally sensitive to mainstream (MS) and SS smoke. A series of sperm DNA quality and reproductive endpoints were investigated after exposing male mice for two weeks to MS or SS smoke. Our results indicated that: (i) only SS smoke significantly affected sperm motility; (ii) only MS smoke induced DNA strand breaks in sperm; (iii) both MS and SS smoke increased sperm chromatin structure abnormalities; and (iv) MS smoke affected both fertilization and the rate of early embryonic development, while SS smoke affected fertilization only. These results show that MS and SS smoke have differential effects on the genetic integrity and function of sperm and provide further evidence that male exposure to second-hand smoke, as well as direct cigarette smoke, may diminish a couples chance for a successful pregnancy and the birth of a healthy baby.
Toxicology | 1999
M.J Solis-Heredia; Betzabet Quintanilla-Vega; A Sierra-Santoyo; J.M Hernández; E Brambila; Mariano E. Cebrián; Arnulfo Albores
The ability of chromium (Cr) salts to increase metallothionein (MT) levels in rat liver, kidney and pancreas, and its relationship with the presence of toxic effects are reported here. Rats were injected subcutaneously with 0, 10, 20, 30, 40, or 50 mg K2Cr2O7/kg and sacrificed 24 h later. Total Cr accumulation followed a dose-dependent pattern, levels in kidney being higher than those in liver or pancreas, suggesting different tissue bioavailabilities and accumulation patterns. Cr(IV) administration resulted in a tissue-specific MT induction: pancreas and liver showed five- and 3.5-fold MT increases, respectively; no increase was observed in the kidney. A positive correlation was observed between zinc and MT concentrations in liver, and between total Cr and MT concentrations in pancreas. Serum alpha-amylase activity showed a dose-dependent increase starting from 20 mg/kg, whereas serum glucose levels increased at doses higher than 30 mg/kg. Serum aspartate aminotransferase and alanine aminotransferase activities were increased in a dose-dependent manner, from 20 and 30 mg/kg, respectively. Our results showed that treatment with Cr(VI) can induce MT synthesis in pancreas and suggests a subsequent binding of Cr to MT. Also, pancreas is a target organ for Cr toxicity, and the usefulness of alpha-amylase activity as a sensitive biomarker of Cr toxicity in human exposed populations merits further study.
Toxicology | 1997
Fernando R. Siller; Betzabet Quintanilla-Vega; Mariano E. Cebrián; Armilfo Albores
Parathion (PA) is a phosphorotioate pesticide requiring P-450-mediated oxidations to become activated to paraoxon, or to be metabolised to its less toxic metabolites. On the other hand, sodium arsenite [As(III)] markedly decreases total hepatic P-450 content and dependent monoxygenase activities. Our aim was to determine the effects of As(III) pretreatment on the acute toxicity of PA and its possible relationship with the effects of As(III) on P-450-dependent monooxygenase activities. Adult male Wistar rats were pretreated with As(III) (5.6 mg As(III)/kg, s.c.), and 24 h later given PA (5 to 20 mg/kg, per os). As(III) pretreatment increased the acute toxicity of PA, reducing 38% its median lethal dose (LD50) from 11.68 to 7.21 mg PA/kg. In addition, As(III) pretreatment further decreased the inhibitory effect of PA on brain acetylcholinesterase activity, reducing 33% the median inhibitory dose (ID50) from 3.44 to 2.31 mg PA/kg. whereas As(III) alone had no significant effects. As(III) decreased the P-450 content to 87% of control values, reduced EROD activity to 74% and BROD activity to 41%; PA produced no significant effects on these parameters, whereas the joint administration of As(III)+ PA produced effects similar to those of As(III). PROD activity was reduced to 36% of control value by PA, whereas As(III) alone produced no significant effects. However, As(III) pretreatment apparently protected against the inhibition of CYP2B1-mediated PROD activity produced by PA, since PROD values were similar to those of control animals. Our results also indicated that the increase in PA toxicity caused by As(III) pretreatment, could also be related to the CYP2B2 isoform, since decreases in CYP2B2-dependent BROD activity were observed in both As(III) and As(III) + PA groups, but not in PA-treated animals, suggesting that CYP2B2 is involved in PA detoxification.