Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bevan S. Weir is active.

Publication


Featured researches published by Bevan S. Weir.


Studies in Mycology | 2012

The Colletotrichum gloeosporioides species complex

Bevan S. Weir; Peter R. Johnston; Ulrike Damm

The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity significance. In addition to the accepted species, notes are provided for names where a possible close relationship with C. gloeosporioides sensu lato has been suggested in the recent literature, along with all subspecific taxa and formae speciales within C. gloeosporioides and its putative teleomorph Glomerella cingulata. Taxonomic novelties: Name replacement - C. queenslandicum B. Weir & P.R. Johnst. New species - C. aenigma B. Weir & P.R. Johnst., C. aeschynomenes B. Weir & P.R. Johnst., C. alatae B. Weir & P.R. Johnst., C. alienum B. Weir & P.R. Johnst, C. aotearoa B. Weir & P.R. Johnst., C. clidemiae B. Weir & P.R. Johnst., C. salsolae B. Weir & P.R. Johnst., C. ti B. Weir & P.R. Johnst. New subspecies - C. kahawae subsp. ciggaro B. Weir & P.R. Johnst. Typification: Epitypification - C. queenslandicum B. Weir & P.R. Johnst.


Studies in Mycology | 2012

Colletotrichum – current status and future directions

Paul F. Cannon; Ulrike Damm; Peter R. Johnston; Bevan S. Weir

A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment.


Studies in Mycology | 2012

The Colletotrichum boninense species complex

Ulrike Damm; Paul F. Cannon; J.H.C. Woudenberg; Peter R. Johnston; Bevan S. Weir; Yu Pei Tan; Roger G. Shivas; Pedro W. Crous

Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. Taxonomic novelties: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.


Applied and Environmental Microbiology | 2004

Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species.

Bevan S. Weir; Susan J. Turner; Warwick B. Silvester; Duckchul Park; J. M. Young

ABSTRACT The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations.


Phytopathology | 2012

Phylogenetic Relationships Among Global Populations of Pseudomonas syringae pv. actinidiae

Joanne R. Chapman; Robert Taylor; Bevan S. Weir; Megan K. Romberg; J. L. Vanneste; J. Luck; Brett J. R. Alexander

ABSTRACT Pseudomonas syringae pv. actinidiae, the causal agent of canker in kiwifruit (Actinidia spp.) vines, was first detected in Japan in 1984, followed by detections in Korea and Italy in the early 1990s. Isolates causing more severe disease symptoms have recently been detected in several countries with a wide global distribution, including Italy, New Zealand, and China. In order to characterize P. syringae pv. actinidiae populations globally, a representative set of 40 isolates from New Zealand, Italy, Japan, South Korea, Australia, and Chile were selected for extensive genetic analysis. Multilocus sequence analysis (MLSA) of housekeeping, type III effector and phytotoxin genes was used to elucidate the phylogenetic relationships between P. syringae pv. actinidiae isolates worldwide. Four additional isolates, including one from China, for which shotgun sequence of the whole genome was available, were included in phylogenetic analyses. It is shown that at least four P. syringae pv. actinidiae MLSA groups are present globally, and that marker sets with differing evolutionary trajectories (conserved housekeeping and rapidly evolving effector genes) readily differentiate all four groups. The MLSA group designated here as Psa3 is the strain causing secondary symptoms such as formation of cankers, production of exudates, and cane and shoot dieback on some kiwifruit orchards in Italy and New Zealand. It is shown that isolates from Chile also belong to this MLSA group. MLSA group Psa4, detected in isolates collected in New Zealand and Australia, has not been previously described. P. syringae pv. actinidiae has an extensive global distribution yet the isolates causing widespread losses to the kiwifruit industry can all be traced to a single MLSA group, Psa3.


Fungal Diversity | 2013

The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica

Gunjan Sharma; Navinder Kumar; Bevan S. Weir; Kevin D. Hyde; Belle Damodara Shenoy

Anthracnose disease caused by the Colletotrichum gloeosporioides species complex is a major problem worldwide. In this study, we investigated the phylogenetic diversity of 207 Indian Colletotrichum isolates, associated with symptomatic and asymptomatic tissues of mango, belonging to this species complex. Phylogenetic analyses were performed based on a 6-gene dataset (act, cal, chs1, gapdh, ITS and tub2), followed by ApMat sequence-analysis. The ApMat-based phylogeny was found to be superior as it provided finer resolution in most of the species-level clades. Importantly, the ApMat marker identified seven lineages within C. siamense sensu lato, including C. jasmini-sambac, C. hymenocallidis, C. melanocaulon, C. siamense sensu stricto and three undesignated, potentially novel lineages. In this study, C. fragariae sensu stricto, C. fructicola, C. jasmini-sambac, C. melanocaulon and five undesignated, potentially novel lineages were found to be associated with mango tissues. There is a need to develop a consensus among mycologists as to which genes should be used to define and delimit a Colletotrichum species and in the mean time mycologists should voluntarily restrain from describing new species based on inadequate datasets.


Persoonia | 2015

Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex

F-F Liu; Bevan S. Weir; Ulrike Damm; Pedro W. Crous; Yan Wang; B. Liu; Mei Wang; M M Zhang; Lei Cai

We investigated the phylogenetic diversity of 144 Colletotrichum isolates associated with symptomatic and asymptomatic tissues of Camellia sinensis and other Camellia spp. from seven provinces in China (Fujian, Guizhou, Henan, Jiangxi, Sichuan, Yunnan, Zhejiang), and seven isolates obtained from other countries, including Indonesia, UK, and the USA. Based on multi-locus (ACT, ApMat, CAL, GAPDH, GS, ITS, TUB2) phylogenetic analyses and phenotypic characters, 11 species were distinguished, including nine well-characterised species (C. alienum, C. boninense, C. camelliae, C. cliviae, C. fioriniae, C. fructicola, C. gloeosporioides, C. karstii, C. sia-mense), and two novel species (C. henanense and C. jiangxiense). Of these, C. camelliae proved to be the most dominant and probably host specific taxon occurring on Camellia. An epitype is also designated for the latter species in this study. Colletotrichum jiangxiense is shown to be phylogenetically closely related to the coffee berry pathogen C. kahawae subsp. kahawae. Pathogenicity tests and the pairwise homoplasy index test suggest that C. jiangxiense and C. kahawae subsp. kahawae are two independent species. This study represents the first report of C. alienum and C. cliviae occurring on Camellia sinensis. In addition, our study demonstrated that the combined use of the loci ApMat and GS in a phylogenetic analysis is able to resolve all currently accepted species in the C. gloeosporioides species complex.


IMA Fungus | 2016

Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales).

Martina Réblová; Andrew N. Miller; Amy Y. Rossman; Keith A. Seifert; Pedro W. Crous; David L. Hawksworth; Mohamed A. Abdel-Wahab; Paul F. Cannon; Dinushani A. Daranagama; Z. Wilhelm de Beer; Shi Ke Huang; Kevin D. Hyde; Ruvvishika Jayawardena; Walter M. Jaklitsch; E. B. Gareth Jones; Yu Ming Ju; Caroline Judith; Sajeewa S. N. Maharachchikumbura; Ka-Lai Pang; Liliane E. Petrini; Huzefa A. Raja; Andrea I. Romero; Carol A. Shearer; Indunil C. Senanayake; Hermann Voglmayr; Bevan S. Weir; Nalin N. Wijayawarden

With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.


PLOS ONE | 2012

Rhizobia with 16S rRNA and nifH Similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC Genes Are Symbionts of New Zealand Carmichaelinae

Heng Wee Tan; Bevan S. Weir; Noel Carter; P. B. Heenan; Hayley J. Ridgway; Euan K. James; Janet I. Sprent; J. Peter W. Young; Mitchell Andrews

New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus) produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae.


Molecular Plant-microbe Interactions | 2016

Phytopathogen Genome Announcement: Draft Genome Sequences of 62 Pseudomonas syringae Type and Pathotype Strains

Shalabh Thakur; Bevan S. Weir; David S. Guttman

Pseudomonas syringae is a diverse species-complex that includes many important crop pathogens. Here, we report the draft genomes of 62 type and pathotype strains, which provide a genomic reference for the diversity of this species complex and will contribute to the elucidation of the genomic basis of pathogenicity and host specificity.

Collaboration


Dive into the Bevan S. Weir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrike Damm

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bongkeun Song

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Craig Tobias

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge