Beverly M. Emerson
Salk Institute for Biological Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beverly M. Emerson.
Molecular Cell | 2001
Joaquı́n M Espinosa; Beverly M. Emerson
The tumor suppressor protein, p53, plays a critical role in mediating cellular response to stress signals by regulating genes involved in cell cycle arrest and apoptosis. p53 is believed to be inactive for DNA binding unless its C terminus is modified or structurally altered. We show that unmodified p53 actively binds to two sites at -1.4 and -2.3 kb within the chromatin-assembled p21 promoter and requires the C terminus and the histone acetyltransferase, p300, for transcription. Acetylation of the C terminus by p300 is not necessary for binding or promoter activation. Instead, p300 acetylates p53-bound nucleosomes in the p21 promoter with spreading to the TATA box. Thus, p53 is an active DNA and chromatin binding protein that may selectively regulate its target genes by recruitment of specific cofactors to structurally distinct binding sites.
Cell | 1998
Jennifer A. Armstrong; James J. Bieker; Beverly M. Emerson
Erythroid Krüppel-like factor (EKLF) is necessary for stage-specific expression of the human beta-globin gene. We show that EKLF requires a SWI/SNF-related chromatin remodeling complex, EKLF coactivator-remodeling complex 1 (E-RC1), to generate a DNase I hypersensitive, transcriptionally active beta-globin promoter on chromatin templates in vitro. E-RC1 contains BRG1, BAF170, BAF155, and INI1 (BAF47) homologs of yeast SWI/SNF subunits, as well as a subunit unique to higher eukaryotes, BAF57, which is critical for chromatin remodeling and transcription with EKLF. E-RC1 displays functional selectivity toward transcription factors, since it cannot activate expression of chromatin-assembled HIV-1 templates with the E box-binding protein TFE-3. Thus, a member of the SWI/SNF family acts directly in transcriptional activation and may regulate subsets of genes by selectively interacting with specific DNA-binding proteins.
Molecular Cell | 2003
Shilpa Kadam; Beverly M. Emerson
Mammalian SWI/SNF chromatin remodeling complexes are involved in critical aspects of cellular growth and genomic stability. Each complex contains one of two highly homologous ATPases, BRG1 and BRM, yet little is known about their specialized functions. We show that BRG1and BRM associate with different promoters during cellular proliferation and differentiation, and in response to specific signaling pathways by preferential interaction with certain classes of transcription factors. BRG1 binds to zinc finger proteins through a unique N-terminal domain that is not present in BRM. BRM interacts with two ankyrin repeat proteins that are critical components of Notch signal transduction. Thus, BRG1 and BRM complexes may direct distinct cellular processes by recruitment to specific promoters through protein-protein interactions that are unique to each ATPase.
Molecular Cell | 2003
Joaquı́n M Espinosa; Ramiro E. Verdún; Beverly M. Emerson
The tumor suppressor protein p53 regulates transcriptional programs that control the response to cellular stress. We show that distinct mechanisms exist to activate p53 target genes as revealed by marked differences in affinities and damage-specific recruitment of transcription initiation components. p53 functions in a temporal manner to regulate promoter activity both before and after stress. Before DNA damage, basal levels of p53 are required to assemble a poised RNA polymerase II initiation complex on the p21 promoter. RNA pol II is converted into an elongating form shortly after stress but before p53 stabilization. Proapoptotic promoters, such as Fas/APO1, have low levels of bound RNA pol II but undergo damage-induced activation through efficient reinitiation. Surprisingly, in a p53-dependent process key basal factors TAFII250 and TFIIB assemble into the transcription machinery in a stress- and promoter-specific manner, behaving as differential cofactors for p53 action after distinct types of DNA damage.
Molecular and Cellular Biology | 2001
Wenjun Zhang; Shilpa Kadam; Beverly M. Emerson; James J. Bieker
ABSTRACT Recruitment of modifiers and remodelers to specific DNA sites within chromatin plays a critical role in controlling gene expression. The study of globin gene regulation provides a convergence point within which to address these issues in the context of tissue-specific and developmentally regulated expression. In this regard, erythroid Krüppel-like factor (EKLF) is critical. EKLF is a red cell-specific activator whose presence is crucial for establishment of the correct chromatin structure and high-level transcriptional induction of adult β-globin. We now find, by metabolic labeling-immunoprecipitation experiments, that EKLF is acetylated in the erythroid cell. EKLF residues acetylated by CREB binding protein (CBP) in vitro map to Lys-288 in its transactivation domain and Lys-302 in its zinc finger domain. Although site-specific DNA binding by EKLF is unaffected by the acetylation status of either of these lysines, directed mutagenesis of Lys-288 (but not Lys-302) decreases the ability of EKLF to transactivate the β-globin promoter in vivo and renders it unable to be superactivated by coexpressed p300 or CBP. In addition, the acetyltransferase function of CBP or p300 is required for superactivation of wild-type EKLF. Finally, acetylated EKLF has a higher affinity for the SWI-SNF chromatin remodeling complex and is a more potent transcriptional activator of chromatin-assembled templates in vitro. These results demonstrate that the acetylation status of EKLF is critical for its optimal activity and suggest a mechanism by which EKLF acts as an integrator of remodeling and transcriptional components to alter chromatin structure and induce adult β-globin expression within the β-like globin cluster.
Molecular Cell | 2009
Michael Witcher; Beverly M. Emerson
The p16(INK4a) tumor suppressor gene is a frequent target of epigenetic inactivation in human cancers, which is an early event in breast carcinogenesis. We describe the existence of a chromatin boundary upstream of the p16 gene that is lost when this gene is aberrantly silenced. We show that the multifunctional protein CTCF associates in the vicinity of this boundary and absence of binding strongly coincides with p16 silencing in multiple types of cancer cells. CTCF binding also correlates with RASSF1A and CDH1 gene activation, and CTCF interaction is absent when these genes are methylated and silenced. Interestingly, defective poly(ADP-ribosyl)ation of CTCF and dissociation from the molecular chaperone Nucleolin occur in p16-silenced cells, abrogating its proper function. Thus, destabilization of specific chromosomal boundaries through aberrant crosstalk between CTCF, poly(ADP-ribosyl)ation, and DNA methylation may be a general mechanism to inactivate tumor suppressor genes and initiate tumorigenesis in numerous forms of human cancers.
Cell | 2002
Beverly M. Emerson
The physiologically coordinated expression of our genome requires exquisite regulation of gene specificity. Recent advances demonstrate that this formidable task is accomplished by diverse mechanisms and networks that operate at distinct levels within the nucleus.
Journal of Biological Chemistry | 2008
Matthias D. Kaeser; Aaron Aslanian; Meng-Qiu Dong; John R. Yates; Beverly M. Emerson
The composition of chromatin-remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. In the present study we investigated the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits with low levels of BRM, BAF170, and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identified BRD7 as a novel component of the Polybromo-associated BRG1-associated factor (PBAF) complex in both ESCs and differentiated cells. Using short hairpin RNA-mediated depletion of BRG1, we showed that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, BMI-1, CRABP1, and thyroid releasing hormone. Knockdown studies of PBAF-specific BRD7 and of a signature subunit within the BAF complex, ARID1A, showed that these two subcomplexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally we examined the role of SWI/SNF in regulating its target genes during differentiation. We found that SWI/SNF affects recruitment of components of the preinitiation complex in a promoter-specific manner to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action.
Nature Reviews Cancer | 2011
Guillaume Lambert; Luis Estévez-Salmerón; Steve D. Oh; David Liao; Beverly M. Emerson; Thea D. Tlsty; Robert H. Austin
Cancer cells rapidly evolve drug resistance through somatic evolution and, in order to continue growth in the metastatic phase, violate the organism-wide consensus of regulated growth and beneficial communal interactions. We suggest that there is a fundamental mechanistic connection between the rapid evolution of resistance to chemotherapy in cellular communities within malignant tissues and the rapid evolution of antibiotic resistance in bacterial communities. We propose that this evolution is the result of a programmed and collective stress response performed by interacting cells, and that, given this fundamental connection, studying bacterial communities can provide deeper insights into the dynamics of adaptation and the evolution of cells within tumours.
Molecular and Cellular Biology | 1996
J A Armstrong; Beverly M. Emerson
The human beta-globin locus control region (LCR) is responsible for forming an active chromatin structure extending over the 100-kb locus, allowing expression of the beta-globin gene family. The LCR consists of four erythroid-cell-specific DNase I hypersensitive sites (HS1 to -4). DNase I hypersensitive sites are thought to represent nucleosome-free regions of DNA which are bound by trans-acting factors. Of the four hypersensitive sites only HS2 acts as a transcriptional enhancer. In this study, we examine the binding of an erythroid protein to its site within HS2 in chromatin in vitro. NF-E2 is a transcriptional activator consisting of two subunits, the hematopoietic cell-specific p45 and the ubiquitous DNA-binding subunit, p18. NF-E2 binds two tandem AP1-like sites in HS2 which form the core of its enhancer activity. In this study, we show that when bound to in vitro-reconstituted chromatin, NF-E2 forms a DNase I hypersensitive site at HS2 similar to the site observed in vivo. Moreover, NF-E2 binding in vitro results in a disruption of nucleosome structure which can be detected 200 bp away. Although NF-E2 can disrupt nucleosomes when added to preformed chromatin, the disruption is more pronounced when NF-E2 is added to DNA prior to chromatin assembly. Interestingly, the hematopoietic cell-specific subunit, p45, is necessary for binding to chromatin but not to naked DNA. Interaction of NF-E2 with its site in chromatin-reconstituted HS2 allows a second erythroid factor, GATA-1, to bind its nearby sites. Lastly, nucleosome disruption by NF-E2 is an ATP-dependent process, suggesting the involvement of energy-dependent nucleosome remodeling factors.