Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhajan Singh is active.

Publication


Featured researches published by Bhajan Singh.


Thorax | 2010

Continuous positive airway pressure titration for obstructive sleep apnoea: automatic versus manual titration

Nigel McArdle; Bhajan Singh; Michelle Murphy; Kevin Gain; Christine Maguire; Sarah Mutch; David R. Hillman

Background and aims Manual laboratory continuous positive airway pressure (CPAP) titration for obstructive sleep apnoea (OSA) is costly, time intensive and delays access to treatment. Automatic positive airway pressure (APAP) titration has the potential to reduce cost and improve access to treatment. The aim of this study was to assess the clinical efficacy and costs of APAP titration compared with manual titration in moderate–severe OSA. Methods Patients with moderate–severe OSA (apnoea/hypopnoea index >15 and Epworth Sleepiness Score ≥8) who were free of co-morbidities that could impair APAP titration were eligible. 249 participants were randomised to manual titration, home APAP or laboratory APAP titration to determine a fixed pressure for CPAP. Clinical and direct cost outcomes were assessed after 4u2005weeks of treatment. Results Average nightly CPAP use, subjective sleepiness, SF36 quality of life, Trails A and B cognitive function and polysomnographic outcomes were similar among the per-protocol groups. Non-hypertensive patients had a lower resting heart rate (and greater reduction in heart rate) at 4u2005weeks after laboratory APAP titration compared with home APAP titration. Costs per patient were highest in manual (AU


Critical Care | 2012

Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension

Adrian Regli; Rohan Mahendran; Edward T.H. Fysh; Brigit Roberts; Bill Noffsinger; Bart L. De Keulenaer; Bhajan Singh; Peter Vernon van Heerden

817.84), followed by laboratory (AU


Critical Care Medicine | 2012

Matching positive end-expiratory pressure to intra-abdominal pressure prevents end-expiratory lung volume decline in a pig model of intra-abdominal hypertension

Adrian Regli; Jakob Chakera; Bart L. De Keulenaer; Brigit Roberts; Bill Noffsinger; Bhajan Singh; Peter Vernon van Heerden

647.56) and home (AU


Critical Care | 2010

Commonly applied positive end-expiratory pressures do not prevent functional residual capacity decline in the setting of intra-abdominal hypertension: a pig model

Adrian Regli; Lisen E. Hockings; Gabrielle C. Musk; Brigit Roberts; Bill Noffsinger; Bhajan Singh; Peter Vernon van Heerden

132.09) APAP titration. An intention-to-treat analysis confirmed the effectiveness of APAP titration compared with manual titration in the standard clinical setting. Conclusions Among patients with moderate–severe OSA without serious co-morbidities, outcomes at 1 month indicate that APAP titration is more cost-effective than manual laboratory titration to determine an appropriate pressure for CPAP for long-term use; with the largest savings occurring in the home APAP patients. Australian New Zealand Clinical Trials Registry Number ACTRN12608000054314.


Current Opinion in Pulmonary Medicine | 2015

Physiology of breathlessness associated with pleural effusions

Rajesh Thomas; Susan Jenkins; Peter R. Eastwood; Y. C. Gary Lee; Bhajan Singh

IntroductionIntra-abdominal hypertension (IAH) causes atelectasis, reduces lung volumes and increases respiratory system elastance. Positive end-expiratory pressure (PEEP) in the setting of IAH and healthy lungs improves lung volumes but not oxygenation. However, critically ill patients with IAH often suffer from acute lung injury (ALI). This study, therefore, examined the respiratory and cardiac effects of positive end-expiratory pressure in an animal model of IAH, with sick lungs.MethodsNine pigs were anesthetized and ventilated (48 +/- 6 kg). Lung injury was induced with oleic acid. Three levels of intra-abdominal pressure (baseline, 18, and 22 mmHg) were randomly generated. At each level of intra-abdominal pressure, three levels of PEEP were randomly applied: baseline (5 cmH2O), moderate (0.5 × intra-abdominal pressure), and high (1.0 × intra-abdominal pressure). We measured end-expiratory lung volumes, arterial oxygen levels, respiratory mechanics, and cardiac output 10 minutes after each new IAP and PEEP setting.ResultsAt baseline PEEP, IAH (22 mmHg) decreased oxygen levels (-55%, P <0.001) and end-expiratory lung volumes (-45%, P = 0.007). At IAP of 22 mmHg, moderate and high PEEP increased oxygen levels (+60%, P = 0.04 and +162%, P <0.001) and end-expiratory lung volume (+44%, P = 0.02 and +279%, P <0.001) and high PEEP reduced cardiac output (-30%, P = 0.04). Shunt and dead-space fraction inversely correlated with oxygen levels and end-expiratory lung volumes. In the presence of IAH, lung, chest wall and respiratory system elastance increased. Subsequently, PEEP decreased respiratory system elastance by decreasing chest wall elastance.ConclusionsIn a porcine sick lung model of IAH, PEEP matched to intra-abdominal pressure led to increased lung volumes and oxygenation and decreased chest wall elastance shunt and dead-space fraction. High PEEP decreased cardiac output. The study shows that lung injury influences the effects of IAH and PEEP on oxygenation and respiratory mechanics. Our findings support the application of PEEP in the setting of acute lung injury and IAH.


Respirology | 2014

Relationships between ventilatory impairment, sleep hypoventilation and type 2 respiratory failure

David R. Hillman; Bhajan Singh; Nigel McArdle; Peter R. Eastwood

Objective:Intra-abdominal hypertension is common in critically ill patients and is associated with increased morbidity and mortality. In a previous experimental study, positive end-expiratory pressures of up to 15 cm H2O did not prevent end-expiratory lung volume decline caused by intra-abdominal hypertension. Therefore, we examined the effect of matching positive end-expiratory pressure to the intra-abdominal pressure on cardio-respiratory parameters. Design:Experimental pig model of intra-abdominal hypertension. Setting:Large animal facility, University of Western Australia. Subjects:Nine anesthetized, nonparalyzed, and ventilated pigs (48 ± 7 kg). Interventions:Four levels of intra-abdominal pressure (baseline, 12, 18, and 22 mm Hg) were generated in a randomized order by inflating an intra-abdominal balloon. At each level of intra-abdominal pressure, three levels of positive end-expiratory pressure were randomly applied with varying degrees of matching the corresponding intra-abdominal pressure: baseline positive end-expiratory pressure (= 5 cm H2O), moderate positive end-expiratory pressure (= half intra-abdominal pressure in cm H2O + 5 cm H2O), and high positive end-expiratory pressure (= intra-abdominal pressure in cm H2O). Measurements:We measured end-expiratory lung volume, arterial oxygen levels, respiratory mechanics, and cardiac output 5 mins after each new intra-abdominal pressure and positive end-expiratory pressure setting. Main Results:Intra-abdominal hypertension decreased end-expiratory lung volume and PaO2 (−49% [p < .001] and −8% [p < .05], respectively, at 22 mm Hg intra-abdominal pressure compared with baseline intra-abdominal pressure) but did not change cardiac output (p = .5). At each level of intra-abdominal pressure, moderate positive end-expiratory pressure increased end-expiratory lung volume (+119% [p < .001] at 22 mm Hg intra-abdominal pressure compared with 5 cm H2O positive end-expiratory pressure) while minimally decreasing cardiac output (−8%, p < .05). High positive end-expiratory pressure further increased end-expiratory lung volume (+233% [p < .001] at 22 mm Hg intra-abdominal pressure compared with 5 cm H2O positive end-expiratory pressure) but led to a greater decrease in cardiac output (−26%, p < .05). Neither moderate nor high positive end-expiratory pressure improved PaO2 (p = .7).Intra-abdominal hypertension decreased end-expiratory transpulmonary pressure but did not alter end-inspiratory transpulmonary pressure. Intra-abdominal hypertension decreased total respiratory compliance through a decrease in chest wall compliance. Positive end-expiratory pressure decreased the respiratory compliance by reducing lung compliance. Conclusions:In a pig model of intra-abdominal hypertension, positive end-expiratory pressure matched to intra-abdominal pressure led to a preservation of end-expiratory lung volume, but did not improve arterial oxygen tension and caused a reduction in cardiac output. Therefore, we do not recommend routine application of positive end-expiratory pressure matched to intra-abdominal pressure to prevent intra-abdominal pressure–induced end-expiratory lung volume decline in healthy lungs.


Journal of Applied Physiology | 2009

Human diaphragm efficiency estimated as power output relative to activation increases with hypercapnic hyperpnea

Kevin E. Finucane; Bhajan Singh

IntroductionIntra-abdominal hypertension is common in critically ill patients and is associated with increased morbidity and mortality. The optimal ventilation strategy remains unclear in these patients. We examined the effect of positive end-expiratory pressures (PEEP) on functional residual capacity (FRC) and oxygen delivery in a pig model of intra-abdominal hypertension.MethodsThirteen adult pigs received standardised anaesthesia and ventilation. We randomised three levels of intra-abdominal pressure (3 mmHg (baseline), 18 mmHg, and 26 mmHg) and four commonly applied levels of PEEP (5, 8, 12 and 15 cmH2O). Intra-abdominal pressures were generated by inflating an intra-abdominal balloon. We measured intra-abdominal (bladder) pressure, functional residual capacity, cardiac output, haemoglobin and oxygen saturation, and calculated oxygen delivery.ResultsRaised intra-abdominal pressure decreased FRC but did not change cardiac output. PEEP increased FRC at baseline intra-abdominal pressure. The decline in FRC with raised intra-abdominal pressure was partly reversed by PEEP at 18 mmHg intra-abdominal pressure and not at all at 26 mmHg intra-abdominal pressure. PEEP significantly decreased cardiac output and oxygen delivery at baseline and at 26 mmHg intra-abdominal pressure but not at 18 mmHg intra-abdominal pressure.ConclusionsIn a pig model of intra-abdominal hypertension, PEEP up to 15 cmH2O did not prevent the FRC decline caused by intra-abdominal hypertension and was associated with reduced oxygen delivery as a consequence of reduced cardiac output. This implies that PEEP levels inferior to the corresponding intra-abdominal pressures cannot be recommended to prevent FRC decline in the setting of intra-abdominal hypertension.


Annals of Biomedical Engineering | 2008

Volume dependence of high-frequency respiratory mechanics in healthy adults

Cindy Thamrin; Kevin E. Finucane; Bhajan Singh; Zoltán Hantos; Peter D. Sly

Purpose of review Pleural effusions have a major impact on the cardiorespiratory system. This article reviews the pathophysiological effects of pleural effusions and pleural drainage, their relationship with breathlessness, and highlights key knowledge gaps. Recent findings The basis for breathlessness in pleural effusions and relief following thoracentesis is not well understood. Many existing studies on the pathophysiology of breathlessness in pleural effusions are limited by small sample sizes, heterogeneous design and a lack of direct measurements of respiratory muscle function. Gas exchange worsens with pleural effusions and improves after thoracentesis. Improvements in ventilatory capacity and lung volumes following pleural drainage are small, and correlate poorly with the volume of fluid drained and the severity of breathlessness. Rather than lung compression, expansion of the chest wall, including displacement of the diaphragm, appears to be the principle mechanism by which the effusion is accommodated. Deflation of the thoracic cage and restoration of diaphragmatic function after thoracentesis may improve diaphragm effectiveness and efficiency, and this may be an important mechanism by which breathlessness improves. Effusions do not usually lead to major hemodynamic changes, but large effusions may cause cardiac tamponade and ventricular diastolic collapse. Patients with effusions can have impaired exercise capacity and poor sleep quality and efficiency. Summary Pleural effusions are associated with abnormalities in gas exchange, respiratory mechanics, respiratory muscle function and hemodynamics, but the association between these abnormalities and breathlessness remains unclear. Prospective studies should aim to identify the key mechanisms of effusion-related breathlessness and predictors of improvement following pleural drainage.


BMJ Open | 2016

Protocol of the PLeural Effusion And Symptom Evaluation (PLEASE) study on the pathophysiology of breathlessness in patients with symptomatic pleural effusions

Rajesh Thomas; Maree Azzopardi; Sanjeevan Muruganandan; Catherine Read; Kevin Murray; Peter R. Eastwood; Sue Jenkins; Bhajan Singh; Y. C. Gary Lee

Conditions that increase load on respiratory muscles and/or reduce their capacity to cope with this load predispose to type 2 (hypercapnic) respiratory failure. In its milder forms, this imbalance between load and capacity may primarily manifest as sleep hypoventilation which, if untreated, can increase the likelihood of wakeful respiratory failure. Such problems are commonly seen in progressive respiratory neuromuscular disorders, morbid obesity and chronic obstructive pulmonary disease, either separately or together. Identifying patients at risk can be important in determining whether and when to intervene with treatments such as non‐invasive ventilatory assistance. Measurements of wakeful respiratory function are fundamental to this risk assessment. These issues are reviewed in this paper.


Journal of Applied Physiology | 2012

Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease

Kevin E. Finucane; Bhajan Singh

Hyperpnea with exercise or hypercapnia causes phasic contraction of abdominal muscles, potentially lengthening the diaphragm at end expiration and unloading it during inspiration. Muscle efficiency in vitro varies with load, fiber length, and precontraction stretch. To examine whether these properties of muscle contractility determine diaphragm efficiency (Eff(di)) in vivo, we measured Eff(di) in six healthy adults breathing air and during progressive hypercapnia at three levels of end-tidal Pco(2) with mean values of 48 (SD 2), 55 (SD 2), and 61 (SD 1) Torr. Eff(di) was estimated as the ratio of diaphragm power (Wdi) [the product of mean inspiratory transdiaphragmatic pressure, diaphragm volume change (DeltaVdi) measured fluoroscopically, and 1/inspiratory duration (Ti(-1))] to activation [root mean square values of inspiratory diaphragm electromyogram (RMS(di)) measured from esophageal electrodes]. At maximum hypercapnea relative to breathing air, 1) gastric pressure and diaphragm length at end expiration (Pg(ee) and Ldi(ee), respectively) increased 1.4 (SD 0.2) and 1.13 (SD 0.08) times, (P < 0.01 for both); 2) inspiratory change (Delta) in Pg decreased from 4.5 (SD 2.2) to -7.7 (SD 3.8) cmH(2)O (P < 0.001); 3) DeltaVdi.Ti(-1), Wdi, RMS(di), and Eff(di) increased 2.7 (SD 0.6), 4.9 (SD 1.8), 2.6 (SD 0.9), and 1.8 (SD 0.3) times, respectively (P < 0.01 for all); and 4) net and inspiratory Wdi were not different (P = 0.4). Eff(di) was predicted from Ldi(ee) (P < 0.001), Pg(ee) (P < 0.001), DeltaPg.Ti(-1) (P = 0.03), and DeltaPg (P = 0.04) (r(2) = 0.52) (multivariate regression analysis). We conclude that, with hypercapnic hyperpnea, 1) approximately 47% of the maximum increase of Wdi was attributable to increased Eff(di); 2) Eff(di) increased due to preinspiratory lengthening and inspiratory unloading of the diaphragm, consistent with muscle behavior in vitro; 3) passive recoil of the diaphragm did not contribute to inspiratory Wdi or Eff(di); and 4) phasic abdominal muscle activity with hyperpnea reduces diaphragm energy consumption.

Collaboration


Dive into the Bhajan Singh's collaboration.

Top Co-Authors

Avatar

Kevin E. Finucane

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar

Nigel McArdle

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar

David R. Hillman

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter R. Eastwood

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Peter A. Cistulli

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Allan I. Pack

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Brendan T. Keenan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge