Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhalchandra A. Diwan is active.

Publication


Featured researches published by Bhalchandra A. Diwan.


Toxicology and Applied Pharmacology | 2009

Metallothionein Protection of Cadmium Toxicity

Curtis D. Klaassen; Jie Liu; Bhalchandra A. Diwan

The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.


Free Radical Biology and Medicine | 2008

Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2

Jingbo Pi; Bhalchandra A. Diwan; Yang Sun; Jie Liu; Wei Qu; Yu-Ying He; Miroslav Styblo; Michael P. Waalkes

Arsenic is a well-known human skin carcinogen but the underlying mechanisms of carcinogenesis are unclear. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism, and emerging data suggest that constitutive activation of Nrf2 contributes to malignant phenotype. In the present study when an immortalized, nontumorigenic human keratinocyte cell line (HaCaT) was continuously exposed to an environmentally relevant level of inorganic arsenite (100 nM) for 28 weeks, malignant transformation occurred as evidenced by the formation of highly aggressive squamous cell carcinoma after inoculation into nude mice. To investigate the mechanisms involved, a broad array of biomarkers for transformation were assessed in these arsenic-transformed cells (termed As-TM). In addition to increased secretion of matrix metalloproteinase-9 (MMP-9), a set of markers for squamous differentiation and skin keratinization, including keratin-1, keratin-10, involucrin, and loricrin, were significantly elevated in As-TM cells. Furthermore, As-TM cells showed increased intracellular glutathione and elevated expression of Nrf2 and its target genes, as well as generalized apoptotic resistance. In contrast to increased basal Nrf2 activity in As-TM cells, a diminished Nrf2-mediated antioxidant response induced by acute exposure to high doses of arsenite or tert-butyl hydroxyquinone occurred. The findings that multiple biomarkers for malignant transformation observed in As-TM cells, including MMP-9 and cytokeratins, are potentially regulated by Nrf2 suggest that constitutive Nrf2 activation may be involved in arsenic carcinogenesis of skin. The weakened Nrf2 activation in response to oxidative stressors observed in As-TM cells, coupled with acquired apoptotic resistance, would potentially have increased the likelihood of transmittable oxidative DNA damage and fixation of mutational/DNA damage events.


Environmental Health Perspectives | 2009

Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype

Erik J. Tokar; Bhalchandra A. Diwan; Michael P. Waalkes

Background Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available. Methods We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype. Results WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired. Conclusions Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population.


Journal of Toxicology and Environmental Health | 1999

Chronic toxic and carcinogenic effects of oral cadmium in the Noble (NBL/Cr) rat: induction of neoplastic and proliferative lesions of the adrenal, kidney, prostate, and testes.

Michael P. Waalkes; Miriam R. Anver; Bhalchandra A. Diwan

Based on the occurrence of pulmonary cancers in exposed populations, cadmium is classified as a human carcinogen. More controversial target sites for cadmium in humans include the prostate and kidney, where some studies have shown a link between cadmium and cancer. In Wistar rats cadmium induces tumors in the ventral prostate. The relevance of such lesions to humans is debated since the rat ventral lobe, unlike the dorsolateral lobe, has no embryological homolog in the human prostate. Cadmium has not been linked with renal tumors in rodents but is a potent nephrotoxin. In this work we studied the effects of oral cadmium in the Noble (NBL/Cr) rat with particular attention to proliferative lesions of the prostate and kidneys. Cadmium (as CdCl2) was given ad libitum throughout the study in the drinking water at doses of 0, 25, 50, 100, and 200 ppm Cd to groups (initial n = 30) of male rats, which were observed for up to 102 wk. At the lower doses of cadmium (< or =50 ppm) a clear dose-related increase in total proliferative lesions of the prostate (ventral and dorsolateral lesions combined) occurred (0 ppm = 21% incidence, 25 ppm = 46%, 50 ppm = 50%; trend p < .03). These lesions were described as intraepithelial hyperplasia with occasional areas of atypical epithelial cells without stromal invasion. The lesions occurred primarily in the dorsolateral prostate with cadmium exposure and most frequently showed three or more foci within each specimen. At higher doses, prostatic proliferative lesions declined to control levels. The loss of prostatic response at the higher doses was likely due to diminished testicular function secondary to cadmium treatment. This was reflected in lesions indicative of testicular hypofunction at the highest cadmium dose, namely, interstitial cell hyperplasia, and a strong correlation between cadmium dose and total proliferative lesions of the testes (hyperplasias and tumors combined). Renal tumors (mainly mesenchymal and pelvic transitional cell), although few in number, showed a positive correlation with cadmium dose, as did pelvic transitional epithelial hyperplasia. Renal lesions were not associated with any cadmium-induced changes in age-related chronic nephropathy. The incidence of pheochromocytomas of the adrenal was increased by cadmium but only at the 50 ppm dose. Inflammatory lesions of the liver and spleen were common at higher doses and showed strong trends based on dose. These results indicate that oral cadmium can induce proliferative lesions in the prostate and kidney of the Noble rat. The finding of proliferative lesions of dorsolateral prostate in rats has presumed relevance to human prostate cancers.


Environmental Health Perspectives | 2009

Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype.

Lamia Benbrahim-Tallaa; Erik J. Tokar; Bhalchandra A. Diwan; Anna L. Dill; Jean-François Coppin; Michael P. Waalkes

Background Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant transformation. Methods Cells were continuously exposed to low-level cadmium (2.5 μM) and checked in vitro and by xenograft study for signs of malignant transformation. Transformant cells were molecularly characterized by protein and transcript analysis of key genes in breast cancer. Results Over 40 weeks of cadmium exposure, cells showed increasing secretion of matrix metalloproteinase-9, loss of contact inhibition, increased colony formation, and increasing invasion, all typical for cancer cells. Inoculation of cadmium-treated cells into mice produced invasive, metastatic anaplastic carcinoma with myoepithelial components. These cadmium-transformed breast epithelial (CTBE) cells displayed characteristics of basal-like breast carcinoma, including ER-α negativity and HER2 (human epidermal growth factor receptor 2) negativity, reduced expression of BRCA1 (breast cancer susceptibility gene 1), and increased CK5 (cytokeratin 5) and p63 expression. CK5 and p63, both breast stem cell markers, were prominently overexpressed in CTBE cell mounds, indicative of persistent proliferation. CTBE cells showed global DNA hypomethylation and c-myc and k-ras overexpression, typical in aggressive breast cancers. CTBE cell xenograft tumors were also ER-α negative. Conclusions Cadmium malignantly transforms normal human breast epithelial cells—through a mechanism not requiring ER-α—into a basal-like cancer phenotype. Direct cadmium induction of a malignant phenotype in human breast epithelial cells strongly fortifies a potential role in breast cancer.


Cancer Research | 2008

Arsenic Exposure In utero Exacerbates Skin Cancer Response in Adulthood with Contemporaneous Distortion of Tumor Stem Cell Dynamics

Michael P. Waalkes; Jie Liu; Dori R. Germolec; Carol S. Trempus; Ronald E. Cannon; Erik J. Tokar; Raymond W. Tennant; Jerrold M. Ward; Bhalchandra A. Diwan

Arsenic is a carcinogen with transplacental activity that can affect human skin stem cell population dynamics in vitro by blocking exit into differentiation pathways. Keratinocyte stem cells (KSC) are probably a key target in skin carcinogenesis. Thus, we tested the effects of fetal arsenic exposure in Tg.AC mice, a strain sensitive to skin carcinogenesis via activation of the v-Ha-ras transgene likely in KSCs. After fetal arsenic treatment, offspring received topical 12-O-tetradecanoyl phorbol-13-acetate (TPA) through adulthood. Arsenic alone had no effect, whereas TPA alone induced papillomas and squamous cell carcinomas (SCC). However, fetal arsenic treatment before TPA increased SCC multiplicity 3-fold more than TPA alone, and these SCCs were much more aggressive (invasive, etc.). Tumor v-Ha-ras levels were 3-fold higher with arsenic plus TPA than TPA alone, and v-Ha-ras was overexpressed early on in arsenic-treated fetal skin. CD34, considered a marker for both KSCs and skin cancer stem cells, and Rac1, a key gene stimulating KSC self-renewal, were greatly increased in tumors produced by arsenic plus TPA exposure versus TPA alone, and both were elevated in arsenic-treated fetal skin. Greatly increased numbers of CD34-positive probable cancer stem cells and marked overexpression of RAC1 protein occurred in tumors induced by arsenic plus TPA compared with TPA alone. Thus, fetal arsenic exposure, although by itself oncogenically inactive in skin, facilitated cancer response in association with distorted skin tumor stem cell signaling and population dynamics, implicating stem cells as a target of arsenic in the fetal basis of skin cancer in adulthood.


Oncogene | 2006

Chronic UVA irradiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance

Yu-Ying He; Jingbo Pi; Jian-Li Huang; Bhalchandra A. Diwan; Michael P. Waalkes; Colin F. Chignell

Ultraviolet A (UVA, 315–400 nm), constituting about 95% of ultraviolet irradiation in natural sunlight, represents a major environmental challenge to the skin and is clearly associated with human skin cancer. It has proven difficult to show direct actions of UVA as a carcinogen in human cells. Here, we demonstrate that chronic UVA exposures at environmentally relevant doses in vitro can induce malignant transformation of human keratinocytes associated with acquired apoptotic resistance. As evidence of carcinogenic transformation, UVA-long-treated (24 J/cm2 once/week for 18 weeks) HaCaT (ULTH) cells showed increased secretion of matrix metalloproteinase (MMP-9), overexpression of keratin 13, altered morphology and anchorage-independent growth. Malignant transformation was established by the production of aggressive squamous cell carcinomas after inoculation of ULTH cells into nude mice (NCr-nu). ULTH cells were resistant to apoptosis induced not only by UVA but also by UVB and arsenite, two other human skin carcinogens. ULTH cells also became resistant to apoptosis induced by etoposide, staurosporine and doxorubicin hydrochloride. Elevated phosphorylation of protein kinase B (PKB, also called AKT) and reduced expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) were detected in ULTH cells. The resistance of ULTH cells to UVA-induced apoptosis was reversed by either inhibition of phosphatidylinositol 3-kinase (PI-3K) or adenovirus expression of PTEN or dominant negative AKT. These data indicate that UVA has carcinogenic potential in human keratinocytes and that the increased AKT signaling and decreased PTEN expression may contribute to this malignant transformation. Further comparisons between the transformed ULTH and control cells should lead to a better understanding of the mechanism of UVA carcinogenesis and may help identify biomarkers for UVA-induced skin malignancies.


Environmental Health Perspectives | 2005

Global Gene Expression Associated with Hepatocarcinogenesis in Adult Male Mice Induced by in Utero Arsenic Exposure

Jie Liu; Yaxiong Xie; Danica M.K. Ducharme; Jun Shen; Bhalchandra A. Diwan; B. Alex Merrick; Sherry F. Grissom; Charles J. Tucker; Richard S. Paules; Raymond W. Tennant; Michael P. Waalkes

Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase–polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation–related genes, stress proteins, and insulin-like growth factors and genes involved in cell–cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.


Cancer Research | 2009

Proline oxidase functions as a mitochondrial tumor suppressor in human cancers.

Yongmin Liu; Gregory L. Borchert; Steven P. Donald; Bhalchandra A. Diwan; Miriam R. Anver; James M. Phang

Tumor metabolism and bioenergetics have become important topics for cancer research and are promising targets for anticancer therapy. Although glucose serves as the main source of energy, proline, an alternative substrate, is important, especially during nutrient stress. Proline oxidase (POX), catalyzing the first step in proline catabolism, is induced by p53 and can regulate cell survival as well as mediate programmed cell death. In a mouse xenograft tumor model, we found that POX greatly reduced tumor formation by causing G2 cell cycle arrest. Furthermore, immunohistochemical staining showed decreased POX expression in tumor tissues. Importantly, HIF-1alpha signaling was impaired with POX expression due to the increased production of alpha-ketoglutarate, a critical substrate for prolyl hydroxylation and degradation of HIF-1alpha. Combined with previous in vitro findings and reported clinical genetic associations, these new findings lead us to propose POX as a mitochondrial tumor suppressor and a potential target for cancer therapy.


International Journal of Toxicology | 1989

Induction of Cytochrome P450b and Its Relationship to Liver Tumor Promotion

R. A. Lubet; R. W. Nims; J. M. Ward; J. M. Rice; Bhalchandra A. Diwan

A wide variety of compounds was examined for the ability to induce a specific form of hepatic cytochrome P450 and to promote the development of DEN-initiated liver tumors (adenomas and carcinomas) in rats over a 72 week period. The induction of cytochrome P450b was determined indirectly by measuring the hepatic induction of pentoxy-or benzyloxyresorufin O-dealkylase activities, which are highly specific substrates for the major phenobarbital-inducible forms of cytochrome P450 in the rat.(10) Results in the rat showed: (1) potent inducers (> 40 ×) of P450b (i.e., phenobarbital, barbital, ethylphenyl-hydantoin, and DDT) are all potent liver tumor promoters; (2) structural analogs that are not inducers of P450b (i.e., hexobarbital, monoethylbarbituric acid, monophenyl-barbituric acid, and diethylhydantoin) all fail to display significant liver tumor promoting activity; and (3) the concomitant induction of liver hypertrophy, microsomal epoxide hydrolase, and cytochrome P450b appears to be proportional and argues for some coordinated “pleiotropic” response of liver parenchyma to these inducers. Additional studies showed that phenobarbital induced cytochrome P450b and was a liver tumor promoter not only in rats, but also in mice and patas monkeys, but was inactive as an enzyme inducer and was a nonpromoter in the hamster.

Collaboration


Dive into the Bhalchandra A. Diwan's collaboration.

Top Co-Authors

Avatar

Michael P. Waalkes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Rice

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jerrold M. Ward

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Lucy M. Anderson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jie Liu

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Kazimierz S. Kasprzak

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Raymond W. Nims

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ronald A. Lubet

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Erik J. Tokar

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Rice

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge