Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhanu P. Chowdhary is active.

Publication


Featured researches published by Bhanu P. Chowdhary.


Mammalian Genome | 2002

Construction of a 5000 rad whole-genome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11

Bhanu P. Chowdhary; Terje Raudsepp; Dee Honeycutt; Elaine Owens; François Piumi; Gérard Guérin; Tara C. Matise; Srinivas R. Kata; James E. Womack; Loren C. Skow

Abstract. A 5000rad whole-genome radiation hybrid (RH) panel was created for the horse. The usefulness of the panel for generating physically ordered maps of individual equine chromosomes was tested by typing 24 markers on horse Chromosome 11 (ECA11). The overall retention of markers on this chromosome was 43.6%. Almost complete retention of two of the typed markers—CA062 and AHT44—clearly indicated the location of thymidine kinase gene on the short arm of ECA11. Seven of the typed markers were FISH mapped to align the RH and cytogenetic maps. With the RH-MAPPER approach, a physically ordered map comprising four linkage groups and incorporating all the markers was obtained. The study provides the first comprehensive map for a horse chromosome that integrates all available mapping data and adds new information that spans the entire length of the equine chromosome. The map clearly underlines the resolving power and utility of the panel and emphasizes the need to have uniformly distributed cytogenetic markers for appropriate alignment of RH map with the chromosome. A comparative status of the ECA11 map in relation to the corresponding human/mouse chromosome is presented.


BMC Veterinary Research | 2012

Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis.

Samantha M. Steelman; Bhanu P. Chowdhary; Scot E. Dowd; Jan S. Suchodolski; Jan E. Janecka

BackgroundThe nutrition and health of horses is closely tied to their gastrointestinal microflora. Gut bacteria break down plant structural carbohydrates and produce volatile fatty acids, which are a major source of energy for horses. Bacterial communities are also essential for maintaining gut homeostasis and have been hypothesized to contribute to various diseases including laminitis. We performed pyrosequencing of 16S rRNA bacterial genes isolated from fecal material to characterize hindgut bacterial communities in healthy horses and those with chronic laminitis.ResultsFecal samples were collected from 10 normal horses and 8 horses with chronic laminitis. Genomic DNA was extracted and the V4-V5 segment of the 16S rRNA gene was PCR amplified and sequenced on the 454 platform generating a mean of 2,425 reads per sample after quality trimming. The bacterial communities were dominated by Firmicutes (69.21% control, 56.72% laminitis) and Verrucomicrobia (18.13% control, 27.63% laminitis), followed by Bacteroidetes, Proteobacteria, and Spirochaetes. We observed more OTUs per individual in the laminitis group than the control group (419.6 and 355.2, respectively, P = 0.019) along with a difference in the abundance of two unassigned Clostridiales genera (P = 0.03 and P = 0.01). The most abundant bacteria were Streptococcus spp., Clostridium spp., and Treponema spp.; along with unassigned genera from Subdivision 5 of Verrucomicrobia, Ruminococcaceae, and Clostridiaceae, which together constituted ~ 80% of all OTUs. There was a high level of individual variation across all taxonomic ranks.ConclusionsOur exploration of the equine fecal microflora revealed higher bacterial diversity in horses with chronic laminitis and identification of two Clostridiales genera that differed in abundance from control horses. There was large individual variation in bacterial communities that was not explained in our study. The core hindgut microflora was dominated by Streptococcus spp., several cellulytic genera, and a large proportion of uncharacterized OTUs that warrant further investigation regarding their function. Our data provide a foundation for future investigations of hindgut bacterial factors that may influence the development and progression of chronic laminitis.


European Journal of Immunology | 2004

Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes

Tomoko Takahashi; Makoto Yawata; Terje Raudsepp; Teri L. Lear; Bhanu P. Chowdhary; Douglas F. Antczak; Masanori Kasahara

In rodents, the Ly49 family encodes natural killer (NK) receptors interacting with classical MHC class I molecules, whereas the corresponding receptors in primates are members of the killer cell immunoglobulin‐like receptor (KIR) family. Recent evidence indicates that the cattle, domestic cat, dog, and pig have a single LY49 and multiple KIR genes, suggesting that predominant NK receptors in most non‐rodent mammals might be KIR. Here, we show that the horse has at least six LY49 genes, five with an immunoreceptor tyrosine‐based inhibition motif (ITIM) and one with arginine in the transmembrane region. Interestingly, none of the horse KIR‐like cDNA clones isolated by library screening encoded molecules likely to function asNK receptors; four types of clones were KIR‐Ig‐like transcript (KIR‐ILT) hybrids and contained premature stop codons and/or frameshift mutations, and two putative allelic sequences predicting KIR3DL molecules had mutated ITIM. To our knowledge, this is the first report suggesting that non‐rodent mammals may use LY49 as NK receptors for classical MHC class I. We also show that horse spleen expresses ILT‐like genes with unique domain organizations. Radiation hybrid mapping and fluorescence in situ hybridization localized horse LY49 and KIR/ILT genes to chromosomes 6q13 and 10p12, respectively.


Chromosome Research | 1999

Construction of chromosome-specific paints for meta- and submetacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey

Terje Raudsepp; Bhanu P. Chowdhary

A pilot study comparing horse and donkey karyotypes on a molecular basis was initiated using the chromosomal microdissection approach. All equine meta- and submetacentric chromosomes, viz. ECA1 to ECA13 and the X and Y chromosomes, were microdissected. The DNA was PCR amplified, non-radioactively labelled and used as probes on equine metaphase chromosomes to confirm their origin. Once tested, the paints were used as probes on donkey metaphase chromosomes to detect homologous chromosomal segments between the two species. The results not only detected conservation of whole chromosome and/or arm synteny between the two karyotypes, but also highlighted varying degrees of rearrangements. The findings also enable deduction of homology between parts of donkey and human karyotypes. In light of the molecular evidence, this study examines the accuracy of the available comparative cytogenetic data between horse and donkey.


Cytogenetic and Genome Research | 2002

Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes

Terje Raudsepp; Marlys L. Houck; Patricia C. M. O'Brien; M. A. Ferguson-Smith; Oliver A. Ryder; Bhanu P. Chowdhary

The California condor is the largest flying bird in North America and belongs to a group of New World vultures. Recovering from a near fatal population decline, and currently with only 197 extant individuals, the species remains listed as endangered. Very little genetic information exists for this species, although sexing methods employing chromosome analysis or W-chromosome specific amplification is routinely applied for the management of this monomorphic species. Keeping in mind that genetic conditions like chondrodystrophy have been identified, preliminary steps were undertaken in this study to understand the genome organization of the condor. This included an extensive cytogenetic analysis that provided (i) a chromosome number of 80 (with a likelihood of an extra pair of microchromosomes), and (ii) information on the centromeres, telomeres and nucleolus organizer regions. Further, a comparison between condor and chicken macrochromosomes was obtained by using individual chicken chromosome specific paints 1–9 and Z and W on condor metaphase spreads. Except for chromosomes 4 and Z, each of the chicken (GGA) macrochromosomes painted a single condor (GCA) macrochromosome. GGA4 paint detected complete homology with two condor chromosomes, viz., GCA4 and GCA9 providing additional proof that the latter are ancestral chromosomes in the birds. The chicken Z chromosome showed correspondence with both Z and W in the condor. The homology suggests that the condor sex chromosomes have not completely differentiated during evolution, which is unlike the majority of the non-ratites studied up till now. Overall, the study provides detailed cytogenetic and basic comparative information on condor chromosomes. These findings significantly advance the effort to study the chondrodystrophy that is responsible for over ten percent mortality in the condor.


Theriogenology | 2010

Total RNA isolation from stallion sperm and testis biopsies

Pranab J. Das; Nandina Paria; Ashley Gustafson-Seabury; Monika Vishnoi; Sankar P. Chaki; Charles C. Love; D.D. Varner; Bhanu P. Chowdhary; Terje Raudsepp

Sperm mRNA transcriptional profiles can be used to evaluate male fertility, yet differences between species in sperm attributes and packaging require adjustments in sperm RNA isolation protocols. The objective was to optimize RNA isolation methodology for fresh, frozen, and extended ejaculates, and epididymal sperm of stallions. Additionally, a protocol for RNA isolation from testis biopsies was established. Separation of sperm from somatic cells was critical for assuring the isolation of sperm-specific RNA. The highest purity was obtained by centrifuging ejaculates and epididymal sperm at 200 x g for 30 min through a 40% Equipure silanized silica particle solution. Sperm RNA isolation was more efficient with TRIzol reagent than with a spin-column based method; it resulted in 2 microg of total RNA per 100 x 10(6) sperm. To evaluate RNA quantity and quality, we used a NanoDrop spectrophotometer and Agilent Bioanalyzer. A protocol for reverse transcriptase PCR with equine primers for PRM2 and PTPRC genes was developed to determine sperm RNA contamination with genomic DNA or RNA from somatic cells. By these methods, hybridization- and sequencing-quality RNA was isolated from 11 samples of stallion sperm. Stallion testis biopsy with a 14 gauge 22 mm deep biopsy needle yielded approximately 12 microg of good quality total RNA, and could serve as an alternative to excision surgery for sample procurement. Compared to RNA isolation from testis, the sperm required advanced processing and RNA quality control. The described methodologies provided a foundation to establish functional genomic studies of stallion fertility.


PLOS ONE | 2013

Stallion Sperm Transcriptome Comprises Functionally Coherent Coding and Regulatory RNAs as Revealed by Microarray Analysis and RNA-seq

Pranab J. Das; Fiona M. McCarthy; Monika Vishnoi; Nandina Paria; Cathy Gresham; Gang Li; Priyanka Kachroo; A. Kendrick Sudderth; S.R. Teague; Charles C. Love; D.D. Varner; Bhanu P. Chowdhary; Terje Raudsepp

Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.


Journal of Tissue Culture Methods | 2001

Chromosome painting in farm, pet and wild animal species

Bhanu P. Chowdhary; Terje Raudsepp

Among the advanced karyotype analysis approaches embraced by animal cytogenetics during the past decade, chromosome painting has had the greatest impact. Generation of chromosome specific paints is considered pivotal to his development. Additionally, ability to use these paints across species (referred to as Zoo-FISH or comparative painting) is undisputedly the most important breakthrough that has contributed to our ability to compare karyotypes of a wide range of evolutionarily highly diverged chromosome painting, and makes them aware of the tools/resources available to carry out this research in a variety of animal species. An overview of the current status of comparative chromosome painting results across closely as well as distantly related species is presented. Findings from different studies show how some segmental syntenies are more conserved as compared to others. The comparisons provide insight into the likely constitution of a vertebrate/mammalian ancestral karyotype and help understand some of the intricacies about karyotype evolution. Importance of comparative painting in setting the stage for rapid development of gene maps in a number of economically important species is elaborated.


Cytogenetic and Genome Research | 2008

A 4,103 marker integrated physical and comparative map of the horse genome

Terje Raudsepp; Ashley Gustafson-Seabury; Keith Durkin; Michelle L. Wagner; Glenda Goh; Christopher M. Seabury; Candice Brinkmeyer-Langford; Eun Joon Lee; Richa Agarwala; E. Stallknecht-Rice; Alejandro A. Schäffer; Loren C. Skow; Teruaki Tozaki; H. Yasue; M.C.T. Penedo; Leslie A. Lyons; Kamal Khazanehdari; M. M. Binns; James N. MacLeod; Ottmar Distl; Gérard Guérin; Tosso Leeb; James R. Mickelson; Bhanu P. Chowdhary

A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse × hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.


PLOS ONE | 2011

A Gene Catalogue of the Euchromatic Male-Specific Region of the Horse Y Chromosome: Comparison with Human and Other Mammals

Nandina Paria; Terje Raudsepp; Alison J. Pearks Wilkerson; Patricia C. M. O'Brien; M. A. Ferguson-Smith; Charles C. Love; Carolyn E. Arnold; Peter C. Rakestraw; William J. Murphy; Bhanu P. Chowdhary

Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages.

Collaboration


Dive into the Bhanu P. Chowdhary's collaboration.

Top Co-Authors

Avatar

Terje Raudsepp

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Guérin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

H. Kuiper

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge