Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bharathwaj Sathyamoorthy is active.

Publication


Featured researches published by Bharathwaj Sathyamoorthy.


Nature | 2015

Visualizing transient Watson–Crick-like mispairs in DNA and RNA duplexes

Isaac J. Kimsey; Katja Petzold; Bharathwaj Sathyamoorthy; Zachary Stein; Hashim M. Al-Hashimi

Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson–Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson–Crick fidelity checkpoints and form with probabilities (10−3 to 10−5) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.


Nature Structural & Molecular Biology | 2016

m 1 A and m 1 G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs

Huiqing Zhou; Isaac J. Kimsey; Evgenia N. Nikolova; Bharathwaj Sathyamoorthy; Gianmarc Grazioli; James McSally; Tianyu Bai; Christoph H. Wunderlich; Christoph Kreutz; Ioan Andricioaei; Hashim M. Al-Hashimi

The B-DNA double helix can dynamically accommodate G-C and A-T base pairs in either Watson–Crick or Hoogsteen configurations. Here, we show that G-C+ (in which + indicates protonation) and A-U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result,N1-methyladenosine and N1-methylguanosine, which occur in DNA as a form of alkylation damage and in RNA as post-transcriptional modifications, have dramatically different consequences. Whereas they create G-C+ and A-T Hoogsteen base pairs in duplex DNA, thereby maintaining the structural integrity of the double helix, they block base-pairing and induce local duplex melting in RNA. These observations provide a mechanism for disrupting RNA structure through post-transcriptional modifications. The different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help cells meet the opposing requirements of maintaining genome stability, on the one hand, and of dynamically modulating the structure of the epitranscriptome, on the other.


Nucleic Acids Research | 2015

New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey

Huiqing Zhou; Bradley J. Hintze; Isaac J. Kimsey; Bharathwaj Sathyamoorthy; Shan Yang; Jane S. Richardson; Hashim M. Al-Hashimi

Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson–Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1′–C1′ distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1′–C1′ distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5′-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.


Journal of Biomolecular NMR | 2014

Development and application of aromatic [ 13 C, 1 H] SOFAST-HMQC NMR experiment for nucleic acids

Bharathwaj Sathyamoorthy; Janghyun Lee; Isaac J. Kimsey; Laura R. Ganser; Hashim M. Al-Hashimi

Higher sensitivity of NMR spectrometers and novel isotopic labeling schemes have ushered the development of rapid data acquisition methodologies, improving the time resolution with which NMR data can be acquired. For nucleic acids, longitudinal relaxation optimization in conjunction with Ernst angle excitation (SOFAST-HMQC) for imino protons, in addition to rendering rapid pulsing, has been demonstrated to yield significant improvements in sensitivity per unit time. Extending such methodology to other spins offers a viable prospect to measure additional chemical shifts, thereby broadening their utilization for various applications. Here, we introduce the 2D [13C, 1H] aromatic SOFAST-HMQC that results in overall sensitivity gain of 1.4- to 1.7-fold relative to the conventional HMQC and can also be extended to yield long-range heteronuclear chemical shifts such as the adenine imino nitrogens N1, N3, N7 and N9. The applications of these experiments range from monitoring real-time biochemical processes, drug/ligand screening, and to collecting data at very low sample concentration and/or in cases where isotopic enrichment cannot be achieved.


Nucleic Acids Research | 2017

Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A.

Bharathwaj Sathyamoorthy; Honglue Shi; Huiqing Zhou; Yi Xue; Atul Rangadurai; Dawn K. Merriman; Hashim M. Al-Hashimi

Abstract In the canonical DNA double helix, Watson–Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02–0.4%) and short-lived (lifetimes ∼0.2–2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair.


Nature | 2018

Dynamic basis for dG•dT misincorporation via tautomerization and ionization

Isaac J. Kimsey; Eric S. Szymanski; Walter J. Zahurancik; Anisha Shakya; Yi Xue; Chia-Chieh Chu; Bharathwaj Sathyamoorthy; Zucai Suo; Hashim M. Al-Hashimi

Tautomeric and anionic Watson–Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson–Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol; population less than 0.4%) and one anionic species (G•T–/U–; population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10−2 to 10−3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT– dominant at pH 8.4 and above or for some mutagenic nucleotides.


MedChemComm | 2017

Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR

Neeraj N. Patwardhan; Laura R. Ganser; Gary J. Kapral; Christopher S. Eubanks; Janghyun Lee; Bharathwaj Sathyamoorthy; Hashim M. Al-Hashimi; Amanda E. Hargrove

Diversification of RNA-targeted scaffolds offers great promise in the search for selective ligands of therapeutically relevant RNA such as HIV-1 TAR. We herein report the establishment of amiloride as a novel RNA-binding scaffold along with synthetic routes for combinatorial C(5)- and C(6)-diversification. Iterative modifications at the C(5)- and C(6)- positions yielded derivative 24, which demonstrated a 100-fold increase in activity over the parent dimethylamiloride in peptide displacement assays. NMR chemical shift mapping was performed using the 2D SOFAST- [1H-13C] HMQC NMR method, which allowed for facile and rapid evaluation of binding modes for all library members. Cheminformatic analysis revealed distinct differences between selective and non-selective ligands. In this study, we evolved dimethylamiloride from a weak TAR ligand to one of the tightest binding selective TAR ligands reported to date through a novel combination of synthetic methods and analytical techniques. We expect these methods to allow for rapid library expansion and tuning of the amiloride scaffold for a range of RNA targets and for SOFAST NMR to allow unprecedented evaluation of small molecule:RNA interactions.


Journal of Biomolecular NMR | 2018

Atomic structures of excited state A–T Hoogsteen base pairs in duplex DNA by combining NMR relaxation dispersion, mutagenesis, and chemical shift calculations

Honglue Shi; Mary C. Clay; Atul Rangadurai; Bharathwaj Sathyamoorthy; David A. Case; Hashim M. Al-Hashimi

NMR relaxation dispersion studies indicate that in canonical duplex DNA, Watson–Crick base pairs (bps) exist in dynamic equilibrium with short-lived low abundance excited state Hoogsteen bps. N1-methylated adenine (m1A) and guanine (m1G) are naturally occurring forms of damage that stabilize Hoogsteen bps in duplex DNA. NMR dynamic ensembles of DNA duplexes with m1A–T Hoogsteen bps reveal significant changes in sugar pucker and backbone angles in and around the Hoogsteen bp, as well as kinking of the duplex towards the major groove. Whether these structural changes also occur upon forming excited state Hoogsteen bps in unmodified duplexes remains to be established because prior relaxation dispersion probes provided limited information regarding the sugar-backbone conformation. Here, we demonstrate measurements of C3′ and C4′ spin relaxation in the rotating frame (R1ρ) in uniformly 13C/15N labeled DNA as sensitive probes of the sugar-backbone conformation in DNA excited states. The chemical shifts, combined with structure-based predictions using an automated fragmentation quantum mechanics/molecular mechanics method, show that the dynamic ensemble of DNA duplexes containing m1A–T Hoogsteen bps accurately model the excited state Hoogsteen conformation in two different sequence contexts. Formation of excited state A–T Hoogsteen bps is accompanied by changes in sugar-backbone conformation that allow the flipped syn adenine to form hydrogen-bonds with its partner thymine and this in turn results in overall kinking of the DNA toward the major groove. Results support the assignment of Hoogsteen bps as the excited state observed in canonical duplex DNA, provide an atomic view of DNA dynamics linked to formation of Hoogsteen bps, and lay the groundwork for a potentially general strategy for solving structures of nucleic acid excited states.


Nature Structural & Molecular Biology | 2018

High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble

Laura R. Ganser; Janghyun Lee; Atul Rangadurai; Dawn K. Merriman; Megan L. Kelly; Aman Kansal; Bharathwaj Sathyamoorthy; Hashim M. Al-Hashimi

Dynamic ensembles hold great promise in advancing RNA-targeted drug discovery. Here we subjected the transactivation response element (TAR) RNA from human immunodeficiency virus type-1 to experimental high-throughput screening against ~100,000 drug-like small molecules. Results were augmented with 170 known TAR-binding molecules and used to generate sublibraries optimized for evaluating enrichment when virtually screening a dynamic ensemble of TAR determined by combining NMR spectroscopy data and molecular dynamics simulations. Ensemble-based virtual screening scores molecules with an area under the receiver operator characteristic curve of ~0.85–0.94 and with ~40–75% of all hits falling within the top 2% of scored molecules. The enrichment decreased significantly for ensembles generated from the same molecular dynamics simulations without input NMR data and for other control ensembles. The results demonstrate that experimentally determined RNA ensembles can significantly enrich libraries with true hits and that the degree of enrichment is dependent on the accuracy of the ensemble.A new way to virtually screen HIV-1 TAR RNA using dynamic ensembles better identifies small molecules targeting RNA secondary structures for development.


Methods in Enzymology | 2015

Characterizing RNA Excited States using NMR Relaxation Dispersion

Yi Xue; Dawn Kellogg; Isaac J. Kimsey; Bharathwaj Sathyamoorthy; Zachary Stein; Mitchell McBrairty; Hashim M. Al-Hashimi

Collaboration


Dive into the Bharathwaj Sathyamoorthy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge