Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bharti Morar is active.

Publication


Featured researches published by Bharti Morar.


American Journal of Human Genetics | 2004

The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time

Peter A. Underhill; Cengiz Cinnioglu; Manfred Kayser; Bharti Morar; Toomas Kivisild; Rosaria Scozzari; Fulvio Cruciani; Giovanni Destro-Bisol; Gabriella Spedini; Geoffrey K. Chambers; Rene J. Herrera; Kiau Kiun Yong; David Gresham; Ivailo Tournev; Marcus W. Feldman; Luba Kalaydjieva

We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9x10-4 per 25 years, with a standard deviation across loci of 5.7x10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria.


American Journal of Human Genetics | 2001

Origins and Divergence of the Roma (Gypsies)

David Gresham; Bharti Morar; Peter A. Underhill; Giuseppe Passarino; Alice A. Lin; Cheryl Wise; Dora Angelicheva; Francesc Calafell; Peter J. Oefner; Peidong Shen; Ivailo Tournev; Rosario de Pablo; Vaidutis Kuĉinskas; Anna Pérez-Lezaun; Elena Marushiakova; Vesselin Popov; Luba Kalaydjieva

The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.


American Journal of Human Genetics | 2004

Mutation history of the Roma/Gypsies

Bharti Morar; David Gresham; Dora Angelicheva; Ivailo Tournev; Rebecca Gooding; Velina Guergueltcheva; Carolin Schmidt; Angela Abicht; Hanns Lochmüller; Attila Tordai; Lajos Kalmár; Melinda Nagy; Veronika Karcagi; Marc Jeanpierre; Agnes Herczegfalvi; David Beeson; Viswanathan Venkataraman; Kim W. Carter; Jeff Reeve; Rosario de Pablo; Vaidutis Kučinskas; Luba Kalaydjieva

The 8-10 million European Roma/Gypsies are a founder population of common origins that has subsequently split into multiple socially divergent and geographically dispersed Gypsy groups. Unlike other founder populations, whose genealogy has been extensively documented, the demographic history of the Gypsies is not fully understood and, given the lack of written records, has to be inferred from current genetic data. In this study, we have used five disease loci harboring private Gypsy mutations to examine some missing historical parameters and current structure. We analyzed the frequency distribution of the five mutations in 832-1,363 unrelated controls, representing 14 Gypsy populations, and the diversification of chromosomal haplotypes in 501 members of affected families. Sharing of mutations and high carrier rates supported a strong founder effect, and the identity of the congenital myasthenia 1267delG mutation in Gypsy and Indian/Pakistani chromosomes provided the best evidence yet of the Indian origins of the Gypsies. However, dramatic differences in mutation frequencies and haplotype divergence and very limited haplotype sharing pointed to strong internal differentiation and characterized the Gypsies as a founder population comprising multiple subisolates. Using disease haplotype coalescence times at the different loci, we estimated that the entire Gypsy population was founded approximately 32-40 generations ago, with secondary and tertiary founder events occurring approximately 16-25 generations ago. The existence of multiple subisolates, with endogamy maintained to the present day, suggests a general approach to complex disorders in which initial gene mapping could be performed in large families from a single Gypsy group, whereas fine mapping would rely on the informed sampling of the divergent subisolates and searching for the shared genomic region that displays the strongest linkage disequilibrium with the disease.


Archives of General Psychiatry | 2010

Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia.

James Tynan Rhys Walters; Aiden Corvin; Michael John Owen; Hywel Williams; Milan Dragovic; Emma M. Quinn; Róisín Judge; Daniel J. Smith; Nadine Norton; Ina Giegling; Annette M. Hartmann; Hans Jürgen Möller; Pierandrea Muglia; Valentina Moskvina; Sarah Dwyer; Therese O'Donoghue; Bharti Morar; Matthew N. Cooper; David Chandler; Assen Jablensky; Michael Gill; Luba Kaladjieva; Derek W. Morris; Michael Conlon O'Donovan; Dan Rujescu; Gary Donohoe

CONTEXT The Zinc Finger Protein 804A gene (ZNF804A) has been implicated in schizophrenia susceptibility by several genome-wide association studies. ZNF804A is brain expressed but of unknown function. OBJECTIVE To investigate whether the identified risk allele at the disease-associated single nucleotide polymorphism rs1344706 is associated with variation in neuropsychological performance in patients and controls. DESIGN Comparison of cases and controls grouped according to ZNF804A genotype (AA vs AC vs CC) on selected measures of cognition in 2 independent samples. SETTING Unrelated patients from general adult psychiatric inpatient and outpatient services and unrelated healthy participants from the general population were ascertained. PARTICIPANTS Patients with DSM-IV-diagnosed schizophrenia and healthy participants from independent samples of Irish (297 cases and 165 controls) and German (251 cases and 1472 controls) nationality. MAIN OUTCOME MEASURES In this 2-stage study, we tested for an association between ZNF804A rs1344706 and cognitive functions known to be impaired in schizophrenia (IQ, episodic memory, working memory, and attention) in an Irish discovery sample. We then tested significant results in a German replication sample. RESULTS In the Irish samples, the ZNF804A genotype was associated with differences in episodic and working memory in patients but not in controls. These findings replicated in the same direction in the German samples. Furthermore, in both samples, when patients with a lower IQ were excluded, the association between ZNF804A and schizophrenia strengthened. CONCLUSIONS In a disorder characterized by heterogeneity, a risk variant at ZNF804A seems to delineate a patient subgroup characterized by relatively spared cognitive ability. Further work is required to establish whether this represents a discrete molecular pathogenesis that differs from that of other patient groups and whether this also has consequences for nosologic classification, illness course, or treatment.


Journal of Cellular and Molecular Medicine | 2008

KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment

Osvaldo P. Almeida; Sibylle G. Schwab; Nicola T. Lautenschlager; Bharti Morar; Kathryn R. Greenop; Leon Flicker; Dieter B. Wildenauer

A common T→C polymorphism of the KIBRA gene has been recently associated with worse performance on tests of episodic memory. This should aimed to determine whether older adults with the KIBRA CC genotype (1) have worse episodic memory than T‐allele carriers and, (2) are more likely to express the phenotype of amnestic mild cognitive impairment (MCI). Our Cross‐sectional investigation of 312 adults aged 50–89 years free of dementia included genotyping of the KIBRA rs17070145 gene and the assessment of episodic memory to Establish a Registry for Alzheimers Disease (CERAD). Participants were considered to have MCI if their memory scores were 1.5 standard deviations below the mean norm for the population. 138/312 participants carried the KIBRA CC genotype. Their immediate and delayed recall scores were significantly lower than the scores of carriers of the T allele (P < 0.05; adjusted for age, gender and pre‐morbid IQ), although the effect size of the CC genotype was weak (0.2). Amongst our volunteers, 133 had MCI, of whom 63 (47.4%) had the CC genotype. There was no association between KIBRA genotype and MCI phenotype (TT/CT versus CC; adjusted odds ratio = 1.70, 95%CI = 0.74, 3.90). We concluded that the KIBRA T→C polymorphism contributes to modulate episodic memory amongst community‐dwelling older adults free of dementia, but plays no obvious role in the phenotypic expression of MCI. Future studies should aim to clarify the long term implications of this polymorphism on cognitive function and to identify other genes involved in the modulation of memory that might confer greater risk of MCI in later life.


American Journal of Human Genetics | 2012

Autosomal-Recessive Congenital Cerebellar Ataxia Is Caused by Mutations in Metabotropic Glutamate Receptor 1

Velina Guergueltcheva; Dimitar N. Azmanov; Dora Angelicheva; Katherine R. Smith; Teodora Chamova; Laura Florez; Michael Bynevelt; Thai Nguyen; Sylvia Cherninkova; Veneta Bojinova; Ara Kaprelyan; Lyudmila Angelova; Bharti Morar; David Chandler; Radka Kaneva; Melanie Bahlo; Ivailo Tournev; Luba Kalaydjieva

Autosomal-recessive congenital cerebellar ataxia was identified in Roma patients originating from a small subisolate with a known strong founder effect. Patients presented with global developmental delay, moderate to severe stance and gait ataxia, dysarthria, mild dysdiadochokinesia, dysmetria and tremors, intellectual deficit, and mild pyramidal signs. Brain imaging revealed progressive generalized cerebellar atrophy, and inferior vermian hypoplasia and/or a constitutionally small brain were observed in some patients. Exome sequencing, used for linkage analysis on extracted SNP genotypes and for mutation detection, identified two novel (i.e., not found in any database) variants located 7 bp apart within a unique 6q24 linkage region. Both mutations cosegregated with the disease in five affected families, in which all ten patients were homozygous. The mutated gene, GRM1, encodes metabotropic glutamate receptor mGluR1, which is highly expressed in cerebellar Purkinje cells and plays an important role in cerebellar development and synaptic plasticity. The two mutations affect a gene region critical for alternative splicing and the generation of receptor isoforms; they are a 3 bp exon 8 deletion and an intron 8 splicing mutation (c.2652_2654del and c.2660+2T>G, respectively [RefSeq accession number NM_000838.3]). The functional impact of the deletion is unclear and is overshadowed by the splicing defect. Although ataxia lymphoblastoid cell lines expressed GRM1 at levels comparable to those of control cells, the aberrant transcripts skipped exon 8 or ended in intron 8 and encoded various species of nonfunctional receptors either lacking the transmembrane domain and containing abnormal intracellular tails or completely missing the tail. The study implicates mGluR1 in human hereditary ataxia. It also illustrates the potential of the Roma founder populations for mutation identification by exome sequencing.


Molecular Psychiatry | 2011

Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition.

Bharti Morar; Milan Dragovic; Flavie Waters; David Chandler; Luba Kalaydjieva; Assen Jablensky

Linkage of 10q22-q23 to schizophrenia and the recently reported association of Neuregulin 3 (NRG3) polymorphisms with high ‘delusion factor’ scores led us to attempt replication and further refinement of these findings in a sample of 411 schizophrenic patients and 223 nonpsychiatric control subjects. Using quantitative cognitive traits, patients were grouped into a cluster with pervasive cognitive deficit (CD) and a cluster with relatively spared cognition (CS). We found a significant association between rs6584400 and schizophrenia, with a trend for rs10883866. Post hoc analysis revealed that this result was mainly due to the CS cluster, characterized by elevated scores on Schneiderian first-rank symptoms, salience of complex delusions and positive thought disorder—thus closely related to the ‘delusion factor’. In addition, both rs6584400 and rs10883866 were associated with the degraded-stimulus continuous performance task in which ‘risk’ alleles were associated with better than average performance in patients and worse performance in controls. This suggests that NRG3 may be modulating early attentional processes for perceptual sensitivity and vigilance, with opposite effects in affected individuals and healthy controls. The two single-nucleotide polymorphisms are in close proximity to the alternative first exons of the NRG3-a, -b and -d isoforms, of which the human brain-specific NRG-b appears to be the most interesting candidate.


American Journal of Human Genetics | 2014

Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans

Camille Humbert; Flora Silbermann; Bharti Morar; Mélanie Parisot; Mohammed Zarhrate; Cécile Masson; Frédéric Tores; Patricia Blanchet; Marie-José Perez; Yuliya Petrov; Philippe Khau Van Kien; Joëlle Roume; Brigitte Leroy; Olivier Gribouval; Luba Kalaydjieva; Laurence Heidet; Rémi Salomon; Corinne Antignac; Alexandre Benmerah; Sophie Saunier; Cécile Jeanpierre

Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease.


Genes, Brain and Behavior | 2011

Polymorphisms associated with normal memory variation also affect memory impairment in schizophrenia

Assen Jablensky; Bharti Morar; Steve Wiltshire; Kim W. Carter; Milan Dragovic; Johanna C. Badcock; David Chandler; Kirsten E. Peters; Luba Kalaydjieva

Neurocognitive dysfunction is a core feature of schizophrenia with particularly prominent deficits in verbal episodic memory. The molecular basis of this memory impairment is poorly understood and its relatedness to normal variation in memory performance is unclear. In this study, we explore, in a sample of cognitively impaired schizophrenia patients, the role of polymorphisms in seven genes recently reported to modulate episodic memory in normal subjects. Three polymorphisms (GRIN2B rs220599, GRM3 rs2189814 and PRKCA rs8074995) were associated with episodic verbal memory in both control and patients with cognitive deficit, but not in cognitively spared patients or the pooled schizophrenia sample. GRM3 and PRKCA acted in opposite directions in patients compared to controls, possibly reflecting an abnormal brain milieu and/or adverse environmental effects in schizophrenia. The encoded proteins balance glutamate signalling vs. excitotoxicity in complex interactions involving the excitatory amino acid transporter 2 (EAAT2), implicated in the dysfunctional glutamatergic signalling in schizophrenia. Double carrier status of the GRM3 and PRKCA minor alleles was associated with lower memory test scores and with increased risk of schizophrenia. Single nucleotide polymorphism (SNP) rs8074995 lies within the PRKCA region spanned by a rare haplotype associated with schizophrenia in a recent UK study and provides further evidence of PRKCA contribution to memory impairment and susceptibility to schizophrenia. Our study supports the utility of parsing the broad phenotype of schizophrenia into component cognitive endophenotypes that reduce heterogeneity and enable the capture of potentially important genetic associations.


PLOS ONE | 2012

Deleterious GRM1 Mutations in Schizophrenia

Mohammed Akli Ayoub; Dora Angelicheva; David Vile; David Chandler; Bharti Morar; Juleen A. Cavanaugh; Peter M. Visscher; Assen Jablensky; Kevin D. G. Pfleger; Luba Kalaydjieva

We analysed a phenotypically well-characterised sample of 450 schziophrenia patients and 605 controls for rare non-synonymous single nucleotide polymorphisms (nsSNPs) in the GRM1 gene, their functional effects and family segregation. GRM1 encodes the metabotropic glutamate receptor 1 (mGluR1), whose documented role as a modulator of neuronal signalling and synaptic plasticity makes it a plausible schizophrenia candidate. In a recent study, this gene was shown to harbour a cluster of deleterious nsSNPs within a functionally important domain of the receptor, in patients with schizophrenia and bipolar disorder. Our Sanger sequencing of the GRM1 coding regions detected equal numbers of nsSNPs in cases and controls, however the two groups differed in terms of the potential effects of the variants on receptor function: 6/6 case-specific and only 1/6 control-specific nsSNPs were predicted to be deleterious. Our in-vitro experimental follow-up of the case-specific mutants showed that 4/6 led to significantly reduced inositol phosphate production, indicating impaired function of the major mGluR1signalling pathway; 1/6 had reduced cell membrane expression; inconclusive results were obtained in 1/6. Family segregation analysis indicated that these deleterious nsSNPs were inherited. Interestingly, four of the families were affected by multiple neuropsychiatric conditions, not limited to schizophrenia, and the mutations were detected in relatives with schizophrenia, depression and anxiety, drug and alcohol dependence, and epilepsy. Our findings suggest a possible mGluR1 contribution to diverse psychiatric conditions, supporting the modulatory role of the receptor in such conditions as proposed previously on the basis of in vitro experiments and animal studies.

Collaboration


Dive into the Bharti Morar's collaboration.

Top Co-Authors

Avatar

Luba Kalaydjieva

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Ivailo Tournev

New Bulgarian University

View shared research outputs
Top Co-Authors

Avatar

Assen Jablensky

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Dora Angelicheva

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Dimitar N. Azmanov

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

David Chandler

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Kim W. Carter

Telethon Institute for Child Health Research

View shared research outputs
Top Co-Authors

Avatar

Milan Dragovic

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Osvaldo P. Almeida

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Johanna C. Badcock

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge