Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bharvin Patel is active.

Publication


Featured researches published by Bharvin Patel.


Molecular Cancer Therapeutics | 2011

Antisense Inhibition of Survivin Expression as a Cancer Therapeutic

Rosa A. Carrasco; Nancy B. Stamm; Eric G. Marcusson; George E. Sandusky; Philip W. Iversen; Bharvin Patel

Survivin, a family member of the inhibitor of apoptosis proteins that is expressed during mitosis in a cell cycle–dependent manner and localized to different components of the mitotic apparatus, plays an important role in both cell division and inhibition of apoptosis. Survivin is expressed in a vast majority of human cancers, but not in normal adult tissues. Survivin expression is often correlated with poor prognosis in a wide variety of cancer patients. These features make survivin an attractive target against which cancer therapeutics could be developed. We have identified a survivin antisense oligonucleotide (ASO) that potently downregulated survivin expression in human cancer cells derived from lung, colon, pancreas, liver, breast, prostate, ovary, cervix, skin, and brain as measured by quantitative RT-PCR and immunoblotting analysis. Specific inhibition of survivin expression in multiple cancer cell lines by this ASO (LY2181308) induced caspase-3–dependent apoptosis, cell cycle arrest in the G2‐M phase, and multinucleated cells. We also showed that inhibition of survivin expression by LY2181308 sensitized tumor cells to chemotherapeutic-induced apoptosis. Most importantly, in an in vivo human xenograft tumor model, LY2181308 produced significant antitumor activity as compared with saline or its sequence-specific control oligonucleotide and sensitized to gemcitabine, paclitaxel, and docetaxel. Furthermore, we showed that this antitumor activity was associated with significant inhibition of survivin expression in these xenograft tumors. On the basis of these, LY2181308 is being evaluated in a clinical setting (Phase II) in combination with docetaxel for the treatment of prostate cancer. Mol Cancer Ther; 10(2); 221–32. ©2011 AACR.


Bioorganic & Medicinal Chemistry Letters | 2003

Novel, potent and selective cyclin D1/CDK4 inhibitors: indolo[6,7-a]pyrrolo[3,4-c]carbazoles.

Thomas A. Engler; Kelly Wayne Furness; Sushant Malhotra; Concha Sanchez-Martinez; Chuan Shih; Walter Xie; Guoxin Zhu; Xun Zhou; Scott Eugene Conner; Margaret M. Faul; Kevin A. Sullivan; Stanley P. Kolis; Harold B. Brooks; Bharvin Patel; Richard M. Schultz; Tammy B. DeHahn; Kashif Kirmani; Charles D. Spencer; Scott A. Watkins; Eileen L. Considine; Jack Dempsey; Catherine A. Ogg; Nancy B. Stamm; Bryan D. Anderson; Robert M. Campbell; Vasu Vasudevan; Michelle L. Lytle

The synthesis and CDK inhibitory properties of a series of indolo[6,7-a]pyrrolo[3,4-c]carbazoles is reported. In addition to their potent CDK activity, the compounds display antiproliferative activity against two human cancer cell lines. These inhibitors also effect strong G1 arrest in these cell lines and inhibit Rb phosphorylation at Ser780 consistent with inhibition of cyclin D1/CDK4.


Bioorganic & Medicinal Chemistry Letters | 2003

Aryl[a]pyrrolo[3,4-c]carbazoles as selective cyclin D1-CDK4 inhibitors

Concha Sanchez-Martinez; Chuan Shih; Margaret M. Faul; Guoxin Zhu; Michael Paal; Carmen Somoza; Tiechao Li; Christine A. Kumrich; Leonard L. Winneroski; Zhou Xun; Harold B. Brooks; Bharvin Patel; Richard M. Schultz; Tammy B. DeHahn; Charles D. Spencer; Scott A. Watkins; Eileen L. Considine; Jack Dempsey; Catherine A. Ogg; Robert M. Campbell; Bryan A. Anderson; Jill R. Wagner

The synthesis of new analogues of Arcyriaflavin A in which one indole ring is replaced by an aryl or heteroaryl ring is described. These new series of aryl[a]pyrrolo[3,4-c]carbazoles were evaluated as inhibitors of Cyclin D1-CDK4. A potent and selective D1-CDK4 inhibitor, 7a (D1-CDK4 IC(50)=45 nM), has been identified. The potency, selectivity profile against other kinases, and structure-activity relationship (SAR) trends of this class of compounds are discussed.


Bioorganic & Medicinal Chemistry Letters | 2003

Synthesis of quinolinyl/isoquinolinyl[a]pyrrolo [3,4-c] carbazoles as cyclin D1/CDK4 inhibitors.

Guoxin Zhu; Scott Eugene Conner; Xun Zhou; Chuan Shih; Harold B. Brooks; Eileen L. Considine; Jack Dempsey; Cathy Ogg; Bharvin Patel; Richard M. Schultz; Charles D. Spencer; Beverly Teicher; Scott A. Watkins

A novel series of pyrrolo[3,4-c] carbazoles fused with a quinolinyl/isoquinolinyl moiety were synthesized and their D1/CDK4 inhibitory and antiproliferative activity were evaluated. Compound 8H, 14H-isoquinolinyl[6,5-a]-pyrrolo[3,4-c]carbazole-7,9-dione (1d) was found to be a highly potent D1/CDK4 inhibitor with an IC(50) of 69 nM. Compound 1d also inhibited tumor cell growth, arrested tumor cells in G1 phase and inhibited pRb phosphorylation.


Bioorganic & Medicinal Chemistry Letters | 2003

Studies on cyclin-dependent kinase inhibitors: indolo-[2,3-a]pyrrolo[3,4-c]carbazoles versus bis-indolylmaleimides

Concha Sanchez-Martinez; Chuan Shih; Guoxin Zhu; Tiechao Li; Harold B. Brooks; Bharvin Patel; Richard M. Schultz; Tammy B. DeHahn; Charles D. Spencer; Scott A. Watkins; Catherine A. Ogg; Eileen L. Considine; Jack Dempsey; Faming Zhang

A series of indolo[2,3-a]pyrrolo[3,4-c]carbazoles and their bis-indolylmaleimides precursors have been prepared in order to compare their activity as D1-CDK4 inhibitors. Both enzymatic and antiproliferative assays have shown that the structurally more constrained indolo[2,3-a]pyrrolo[3,4-c]carbazoles are consistently more active (8-42-fold) in head-to-head comparison with their bis-indolylmaleimides counterparts. Cell-cycle analysis using flow cytometry have also shown that the indolocarbazoles are selective G1 blockers while the bis-indolylmaleimides arrest cells in the G2/M phase.


Cancer Research | 2011

Abstract 2819: Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated hedgehog signaling

Mark H. Bender; Philip Arthur Hipskind; Andrew Capen; Michael D. Cockman; Kelly M. Credille; Hong Gao; Jolie Anne Bastian; Julia M. Clay; Karen Lynn Lobb; Daniel Jon Sall; Michelle Lee Thompson; Takako Wilson; Graham N. Wishart; Bharvin Patel

The Hedgehog (Hh) pathway is a highly conserved signaling system that plays an important role in embryonic development and tissue homeostasis through regulation of cell differentiation and proliferation, and deregulated Hh signaling has been implicated in variety of cancers. Two distinct mechanisms are responsible for inappropriate and uncontrolled Hh pathway activation in human malignancies: ligand-dependent, due to over-expression of Hh ligand, and ligand-independent, resulting from genetic mutations in pathway components such as Patched (Ptch) and Smoothened (Smo). Smo, a member of the class F G-protein coupled receptor family, is a key regulator of Hh signaling pathway, and therefore is an attractive target for pathway modulation. We have identified a potent and selective small molecule antagonist of Smo. This novel molecule (LY2940680) binds to the Smo receptor and potently inhibits Hh signaling in Daoy, a human medulloblastoma tumor cell line, and C3H10T½, a mouse mesenchymal cell line. Importantly, LY2940680 binds to and inhibits the functional activity of resistant Smo mutant (D473H) produced by treatment with GDC-0449 (a Smo antagonist from Genentech). LY2940680 also has excellent pharmacokinetic properties in rodent and non-rodent species. Treatment of Ptch +/− p53 −/− transgenic mice, which spontaneously develop medulloblastoma, with oral administration of LY2940680 produced remarkable efficacy and significantly improved their survival. Magnetic resonance imaging of these mice revealed rapid kinetics of anti-tumor activity. Immunohistochemistry analysis of medulloblastoma tumors showed that LY2940680 treatment induced Caspase-3 activity and reduced proliferation. LY2940680 inhibited Hh regulated gene expression in the subcutaneous xenograft tumor stroma and produced significant anti-tumor activity. In summary, we have characterized an orally bio-available small molecule Smo antagonist that may provide therapeutic benefit to cancer patients with deregulated Hh signaling. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2819. doi:10.1158/1538-7445.AM2011-2819


British Journal of Clinical Pharmacology | 2011

Integrated analysis of preclinical data to support the design of the first in man study of LY2181308, a second generation antisense oligonucleotide.

Sophie Callies; Valérie André; Bharvin Patel; David Waters; Paul C Francis; Michael Burgess; Michael Lahn

AIMS To predict the concentration and target inhibition profiles of the survivin inhibitor antisense oligonucleotide LY2181308 in humans. METHODS An indirect pharmacokinetic/pharmacodynamic (PK/PD) model was built to predict the inhibition of survivin mRNA and protein in humans following LY2181308 dosing. Plasma and tissue PK data from cynomolgus monkeys were analyzed by non-linear mixed effect modelling techniques. Human PK parameters were predicted using allometric scaling. Assumptions about the pharmacodynamic parameters were made based upon the target and tumour growth inhibition data from mouse xenograft models. This enabled the prediction of the clinical PK/PD profiles. RESULTS Following a 750 mg dose, LY2181308 tumour concentrations ranging from 18.8 to 54µgg(-1) were predicted to lead to 50 to 90% target inhibition. In humans, LY2181308 tumour concentrations fro 13.9 to 52.8µgg(-1) (n=4, LY2181308 750mg) were observed associated with a median survivin mRNA and protein inhibition of 20%±34 (SD) (n=9) and 23%±63 (SD) (n=10), respectively. The human PK parameters were adequately estimated: central V(d) , 4.09 l (90% CI, 3.6, 4.95), distribution clearances, 2.54 (2.36, 2.71), 0.0608 (0.033, 0.6) and 1.67 (1.07, 2.00)lh(-1) , peripheral V(d) s, 25 900 (19 070, 37 200), 0.936 (0.745, 2.07) and 2.51 (1.01, 2.922)l, mean elimination clearance 23.1lh(-1) (5.6, 33.4) and mean terminal half-life, 32.7 days (range 22-52 days). CONCLUSION The model reasonably predicted LY2181308 PK in humans. Overall, the integration of preclinical PK/PD data enabled to appropriately predict dose and dosing regimen of LY2181308 in humans with pharmacologically relevant survivin inhibition achieved at 750mg.


Gene | 1997

Cloning and characterization of the mouse homolog of the human A6 gene.

John F. Beeler; Bharvin Patel; Marcio Chedid; William J. LaRochelle

The mouse homolog of a novel human protein tyrosine kinase encoding gene, A6, was cloned and characterized. The human A6 cDNA is unique in that its gene product exhibited in vitro kinase activity but its predicted amino acid (aa) sequence revealed no consensus motifs commonly found within the kinase domain of protein kinase family members. Here, we isolated a mouse A6 cDNA clone from a murine myeloid progenitor 32D cell library using a 1.1 kb cDNA probe containing the entire human A6 open reading frame (ORF). Determination of the mouse A6 cDNA nucleotide (nt) sequence revealed an ORF of 1050 nt encoding a protein of 350 aa and a molecular mass of 40,201 Da. The mouse and human A6 gene products shared 93% identity. In vitro translation, as well as immunoprecipitation of 32D cell lysates confirmed expression of mouse A6 as a 40 kDa protein. Northern blot analysis of total RNA from mouse cell lines derived from diverse tissues including NIH 3T3 fibroblasts, L cell fibroblasts, C2C12 myoblasts, M1 myeloblasts, BALB/MK cells, 70Z/3 preB lymphocytes, and p388D1 monocytes demonstrated widespread A6 mRNA expression. A6 mRNA was also ubiquitously expressed at varying levels in all tissues examined. The identification of a potential actin/phosphoinositide binding domain and consensus phosphorylation sites, coupled with A6s expression in a variety of cell types suggest that the A6 gene product may play a role in basic cellular processes.


Journal of Biological Chemistry | 2017

Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer

Tushar D. Bhagat; Yiyu Zou; Shizheng Huang; Jihwan Park; Matthew Palmer; Caroline Hu; Weijuan Li; Niraj Shenoy; Orsolya Giricz; Gaurav Choudhary; Yiting Yu; Yi An Ko; María Concepción Izquierdo; Ae Seo Deok Park; Nishanth Vallumsetla; Remi Laurence; Robert Lopez; Masako Suzuki; James Pullman; Justin D. Kaner; Benjamin A. Gartrell; A. Ari Hakimi; John M. Greally; Bharvin Patel; Karim A. Benhadji; Kith Pradhan; Amit Verma; Katalin Susztak

Clear cell renal cell carcinoma (CCRCC) is an incurable malignancy in advanced stages and needs newer therapeutic targets. Transcriptomic analysis of CCRCCs and matched microdissected renal tubular controls revealed overexpression of NOTCH ligands and receptors in tumor tissues. Examination of the TCGA RNA-seq data set also revealed widespread activation of NOTCH pathway in a large cohort of CCRCC samples. Samples with NOTCH pathway activation were also clinically distinct and were associated with better overall survival. Parallel DNA methylation and copy number analysis demonstrated that both genetic and epigenetic alterations led to NOTCH pathway activation in CCRCC. NOTCH ligand JAGGED1 was overexpressed and associated with loss of CpG methylation of H3K4me1-associated enhancer regions. JAGGED2 was also overexpressed and associated with gene amplification in distinct CCRCC samples. Transgenic expression of intracellular NOTCH1 in mice with tubule-specific deletion of VHL led to dysplastic hyperproliferation of tubular epithelial cells, confirming the procarcinogenic role of NOTCH in vivo. Alteration of cell cycle pathways was seen in murine renal tubular cells with NOTCH overexpression, and molecular similarity to human tumors was observed, demonstrating that human CCRCC recapitulates features and gene expression changes observed in mice with transgenic overexpression of the Notch intracellular domain. Treatment with the γ-secretase inhibitor LY3039478 led to inhibition of CCRCC cells in vitro and in vivo. In summary, these data reveal the mechanistic basis of NOTCH pathway activation in CCRCC and demonstrate this pathway to a potential therapeutic target.


Oncotarget | 2018

Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors

Bruce W. Konicek; Andrew Capen; Kelly M. Credille; Philip J. Ebert; Beverly L. Falcon; Gary L. Heady; Bharvin Patel; Victoria L. Peek; Jennifer R. Stephens; Julie Stewart; Stephanie L. Stout; David E. Timm; Suzane L. Um; Melinda D. Willard; Isabella H. Wulur; Yi Zeng; Yong Wang; Richard A. Walgren; Sau-Chi Betty Yan

Merestinib is an oral multi-kinase inhibitor targeting a limited number of oncokinases including MET, AXL, RON and MKNK1/2. Here, we report that merestinib inhibits neurotrophic receptor tyrosine kinases NTRK1/2/3 which are oncogenic drivers in tumors bearing NTRK fusion resulting from chromosomal rearrangements. Merestinib is shown to be a type II NTRK1 kinase inhibitor as determined by x-ray crystallography. In KM-12 cells harboring TPM3-NTRK1 fusion, merestinib exhibits potent p-NTRK1 inhibition in vitro by western blot and elicits an anti-proliferative response in two- and three-dimensional growth. Merestinib treatment demonstrated profound tumor growth inhibition in in vivo cancer models harboring either a TPM3-NTRK1 or an ETV6-NTRK3 gene fusion. To recapitulate resistance observed from type I NTRK kinase inhibitors entrectinib and larotrectinib, we generated NIH-3T3 cells exogenously expressing TPM3-NTRK1 wild-type, or acquired mutations G595R and G667C in vitro and in vivo. Merestinib blocks tumor growth of both wild-type and mutant G667C TPM3-NTRK1 expressing NIH-3T3 cell-derived tumors. These preclinical data support the clinical evaluation of merestinib, a type II NTRK kinase inhibitor (NCT02920996), both in treatment naïve patients and in patients progressed on type I NTRK kinase inhibitors with acquired secondary G667C mutation in NTRK fusion bearing tumors.

Collaboration


Dive into the Bharvin Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge