Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhaskar Saha is active.

Publication


Featured researches published by Bhaskar Saha.


IEEE Transactions on Instrumentation and Measurement | 2009

Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework

Bhaskar Saha; Kai Goebel; Scott Poll; Jon P. Christophersen

This paper explores how the remaining useful life (RUL) can be assessed for complex systems whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. Consequently, inference and estimation techniques need to be applied on indirect measurements, anticipated operational conditions, and historical data for which a Bayesian statistical approach is suitable. Models of electrochemical processes in the form of equivalent electric circuit parameters were combined with statistical models of state transitions, aging processes, and measurement fidelity in a formal framework. Relevance vector machines (RVMs) and several different particle filters (PFs) are examined for remaining life prediction and for providing uncertainty bounds. Results are shown on battery data.


ieee conference on prognostics and health management | 2008

Metrics for evaluating performance of prognostic techniques

Abhinav Saxena; Jose Celaya; Edward Balaban; Kai Goebel; Bhaskar Saha; Sankalita Saha; Mark Schwabacher

Prognostics is an emerging concept in condition based maintenance (CBM) of critical systems. Along with developing the fundamentals of being able to confidently predict Remaining Useful Life (RUL), the technology calls for fielded applications as it inches towards maturation. This requires a stringent performance evaluation so that the significance of the concept can be fully exploited. Currently, prognostics concepts lack standard definitions and suffer from ambiguous and inconsistent interpretations. This lack of standards is in part due to the varied end-user requirements for different applications, time scales, available information, domain dynamics, etc. to name a few issues. Instead, the research community has used a variety of metrics based largely on convenience with respect to their respective requirements. Very little attention has been focused on establishing a common ground to compare different efforts. This paper surveys the metrics that are already used for prognostics in a variety of domains including medicine, nuclear, automotive, aerospace, and electronics. It also considers other domains that involve prediction-related tasks, such as weather and finance. Differences and similarities between these domains and health maintenance have been analyzed to help understand what performance evaluation methods may or may not be borrowed. Further, these metrics have been categorized in several ways that may be useful in deciding upon a suitable subset for a specific application. Some important prognostic concepts have been defined using a notational framework that enables interpretation of different metrics coherently. Last, but not the least, a list of metrics has been suggested to assess critical aspects of RUL predictions before they are fielded in real applications.


Transactions of the Institute of Measurement and Control | 2009

Comparison of prognostic algorithms for estimating remaining useful life of batteries

Bhaskar Saha; Kai Goebel; Jon P. Christophersen

The estimation of remaining useful life (RUL) of a faulty component is at the centre of system prognostics and health management. It gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. RUL prediction needs to contend with multiple sources of errors, like modelling inconsistencies, system noise and degraded sensor fidelity, which leads to unsatisfactory performance from classical techniques like autoregressive integrated moving average (ARIMA) and extended Kalman filtering (EKF). The Bayesian theory of uncertainty management provides a way to contain these problems. The relevance vector machine (RVM), the Bayesian treatment of the well known support vector machine (SVM), a kernel-based regression/classification technique, is used for model development. This model is incorporated into a particle filter (PF) framework, where statistical estimates of noise and anticipated operational conditions are used to provide estimates of RUL in the form of a probability density function (pdf). We present here a comparative study of the above-mentioned approaches on experimental data collected from Li-ion batteries. Batteries were chosen as an example of a complex system whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions.


ieee aerospace conference | 2008

Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

Bhaskar Saha; Kai Goebel

Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition-Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.


autotestcon | 2007

An integrated approach to battery health monitoring using bayesian regression and state estimation

Bhaskar Saha; Kai Goebel; Scott Poll; Jon P. Christophersen

The application of the Bayesian theory of managing uncertainty and complexity to regression and classification in the form of relevance vector machine (RVM), and to state estimation via particle filters (PF), proves to be a powerful tool to integrate the diagnosis and prognosis of battery health. Accurate estimates of the state-of-charge (SOC), the state-of-health (SOH) and state-of-life (SOL) for batteries provide a significant value addition to the management of any operation involving electrical systems. This is especially true for aerospace systems, where unanticipated battery performance may lead to catastrophic failures. Batteries, composed of multiple electrochemical cells, are complex systems whose internal state variables are either inaccessible to sensors or hard to measure under operational conditions. In addition, battery performance is strongly influenced by ambient environmental and load conditions. Consequently, inference and estimation techniques need to be applied on indirect measurements, anticipated operational conditions and historical data, for which a Bayesian statistical approach is suitable. Accurate models of electro-chemical processes in the form of equivalent electric circuit parameters need to be combined with statistical models of state transitions, aging processes and measurement fidelity, need to be combined in a formal framework to make the approach viable. The RVM, which is a Bayesian treatment of the support vector machine (SVM), is used for diagnosis as well as for model development. The PF framework uses this model and statistical estimates of the noise in the system and anticipated operational conditions to provide estimates of SOC, SOH and SOL. Validation of this approach on experimental data from Li-ion batteries is presented.


ieee conference on prognostics and health management | 2008

Advances in uncertainty representation and management for particle filtering applied to prognostics

Marcos E. Orchard; Gregory J. Kacprzynski; Kai Goebel; Bhaskar Saha; George Vachtsevanos

Particle filters (PF) have been established as the de facto state of the art in failure prognosis. They combine advantages of the rigors of Bayesian estimation to nonlinear prediction while also providing uncertainty estimates with a given solution. Within the context of particle filters, this paper introduces several novel methods for uncertainty representations and uncertainty management. The prediction uncertainty is modeled via a rescaled Epanechnikov kernel and is assisted with resampling techniques and regularization algorithms. Uncertainty management is accomplished through parametric adjustments in a feedback correction loop of the state model and its noise distributions. The correction loop provides the mechanism to incorporate information that can improve solution accuracy and reduce uncertainty bounds. In addition, this approach results in reduction in computational burden. The scheme is illustrated with real vibration feature data from a fatigue-driven fault in a critical aircraft component.


ieee aerospace conference | 2009

Evaluating algorithm performance metrics tailored for prognostics

Abhinav Saxena; Jose Celaya; Bhaskar Saha; Sankalita Saha; Kai Goebel

Prognostics has taken center stage in Condition Based Maintenance (CBM) where it is desired to estimate Remaining Useful Life (RUL) of a system so that remedial measures may be taken in advance to avoid catastrophic events or unwanted downtimes. Validation of such predictions is an important but difficult proposition and a lack of appropriate evaluation methods renders prognostics meaningless. Evaluation methods currently used in the research community are not standardized and in many cases do not sufficiently assess key performance aspects expected out of a prognostics algorithm. In this paper we introduce several new evaluation metrics tailored for prognostics and show that they can effectively evaluate various algorithms as compared to other conventional metrics. Four prognostic algorithms, Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Polynomial Regression (PR), are compared. These algorithms vary in complexity and their ability to manage uncertainty around predicted estimates. Results show that the new metrics rank these algorithms in a different manner; depending on the requirements and constraints suitable metrics may be chosen. Beyond these results, this paper offers ideas about how metrics suitable to prognostics may be designed so that the evaluation procedure can be standardized.


ieee aerospace conference | 2012

A comparison of filter-based approaches for model-based prognostics

Matthew J. Daigle; Bhaskar Saha; Kai Goebel

Model-based prognostics approaches use domain knowledge about a system and its failure modes through the use of physics-based models. Model-based prognosis is generally divided into two sequential problems: a joint state-parameter estimation problem, in which, using the model, the health of a system or component is determined based on the observations; and a prediction problem, in which, using the model, the state-parameter distribution is simulated forward in time to compute end of life and remaining useful life. The first problem is typically solved through the use of a state observer, or filter. The choice of filter depends on the assumptions that may be made about the system, and on the desired algorithm performance. In this paper, we review three separate filters for the solution to the first problem: the Daum filter, an exact nonlinear filter; the unscented Kalman filter, which approximates nonlinearities through the use of a deterministic sampling method known as the unscented transform; and the particle filter, which approximates the state distribution using a finite set of discrete, weighted samples, called particles. Using a centrifugal pump as a case study, we conduct a number of simulation-based experiments investigating the performance of the different algorithms as applied to prognostics.


ieee aerospace conference | 2011

Battery health management system for electric UAVs

Bhaskar Saha; Edwin Koshimoto; Cuong C. Quach; Edward F. Hogge; Thomas H. Strom; Boyd L. Hill; Sixto L. Vazquez; Kai Goebel

This paper presents a novel battery health management system for electric UAVs (unmanned aerial vehicles) based on a Bayesian inference driven prognostic framework. The aim is to be able to predict the end-of-discharge (EOD) event that indicates that the battery pack has run out of charge for any given flight of an electric UAV platform. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This problem is more pronounced in battery powered electric UAVs since different flight regimes like takeoff/landing and cruise have different power requirements and a dead stick condition (battery shut off in flight) can have catastrophic consequences. Since UAVs deployments are relatively new, there is a lack of statistically significant flight data to motivate data-driven approaches. Consequently, we have developed a detailed discharge model for the batteries used and used it in a Bayesian inference based filtering (Particle Filtering) technique to generate remaining useful life (RUL) distributions for a given discharge. The results section presents the validation of this approach in hardware-in-the-loop tests.12


ieee aerospace conference | 2009

Towards prognostics for electronics components

Bhaskar Saha; José R. Celaya; Philip F. Wysocki; Kai Goebel

Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

Collaboration


Dive into the Bhaskar Saha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Wilko Sommer

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge