Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhavna Hora is active.

Publication


Featured researches published by Bhavna Hora.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Phenotypic properties of transmitted founder HIV-1

Nicholas F. Parrish; Feng Gao; Hui Li; Elena E. Giorgi; Hannah J. Barbian; Erica H. Parrish; Lara Zajic; Shilpa S. Iyer; Julie M. Decker; Amit Kumar; Bhavna Hora; Anna Berg; Fangping Cai; Jennifer Hopper; Thomas N. Denny; Hairao Ding; Christina Ochsenbauer; John C. Kappes; Rachel P. Galimidi; Anthony P. West; Pamela J. Bjorkman; Craig B. Wilen; Robert W. Doms; Meagan O'Brien; Nina Bhardwaj; Persephone Borrow; Barton F. Haynes; Mark Muldoon; James Theiler; Bette T. Korber

Defining the virus–host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.


PLOS Pathogens | 2012

Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7

Nicholas F. Parrish; Craig B. Wilen; Lauren B. Banks; Shilpa S. Iyer; Jennifer M. Pfaff; Jesus F. Salazar-Gonzalez; Maria G. Salazar; Julie M. Decker; Erica H. Parrish; Anna Berg; Jennifer Hopper; Bhavna Hora; Amit Kumar; Tatenda Mahlokozera; Sally Yuan; Charl Coleman; Marion Vermeulen; Haitao Ding; Christina Ochsenbauer; John C. Tilton; Sallie R. Permar; John C. Kappes; Michael R. Betts; Michael P. Busch; Feng Gao; David C. Montefiori; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; Robert W. Doms

Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.


Cell Host & Microbe | 2015

Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

M. Anthony Moody; Feng Gao; Thaddeus C. Gurley; Joshua D. Amos; Amit Kumar; Bhavna Hora; Dawn J. Marshall; John F. Whitesides; Shi-Mao Xia; Robert Parks; Krissey E. Lloyd; Kwan-Ki Hwang; Xiaozhi Lu; Mattia Bonsignori; Andrés Finzi; Nathan Vandergrift; S. Munir Alam; Guido Ferrari; Xiaoying Shen; Georgia D. Tomaras; Gift Kamanga; Myron S. Cohen; Noel E. Sam; Saidi Kapiga; Elin S. Gray; Nancy Tumba; Lynn Morris; Susan Zolla-Pazner; Miroslaw K. Gorny; John R. Mascola

The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.


Retrovirology | 2012

Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/ founder genome

Hongshuo Song; Jeffrey W. Pavlicek; Fangping Cai; Tanmoy Bhattacharya; Hui Li; Shilpa S. Iyer; Katharine J. Bar; Julie M. Decker; Nilu Goonetilleke; Michael K. P. Liu; Anna Berg; Bhavna Hora; Mark Drinker; Josh Eudailey; Joy Pickeral; Ma Moody; Guido Ferrari; Andrew J. McMichael; Alan S. Perelson; George M. Shaw; Beatrice H. Hahn; Barton F. Haynes; Feng Gao

BackgroundA modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method.ResultsThe T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region.ConclusionsThese findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.


Virology | 2009

Cross-reactive monoclonal antibodies to multiple HIV-1 subtype and SIVcpz envelope glycoproteins.

Feng Gao; Richard M. Scearce; S. Munir Alam; Bhavna Hora; Shi-Mao Xia; Julie E. Hohm; Robert Parks; Damon F. Ogburn; Georgia D. Tomaras; Emily Park; Woodrow Lomas; Vernon C. Maino; Susan A. Fiscus; Myron S. Cohen; M. Anthony Moody; Beatrice H. Hahn; Bette T. Korber; Hua-Xin Liao; Barton F. Haynes

The extraordinarily high level of genetic variation of HIV-1 env genes poses a challenge to obtain antibodies that cross-react with multiple subtype Env glycoproteins. To determine if cross-reactive monoclonal antibodies (mAbs) to highly conserved epitopes in HIV-1 envelope glycoproteins can be induced, we immunized mice with wild-type or consensus HIV-1 Env proteins and characterized a panel of ten mAbs that reacted with varying breadth to subtypes A, B, C, D, F, G, CRF01_AE, and a highly divergent SIVcpzUS Env proteins by ELISA and Western blot analysis. Two mAbs (3B3 and 16H3) cross-reacted with all tested Env proteins, including SIVcpzUS Env. Surface plasmon resonance analyses showed both 3B3 and 16H3 bound Env proteins with high affinity. However, neither neutralized primary HIV-1 pseudoviruses. These data indicate that broadly reactive non-neutralizing monoclonal antibodies can be elicited, but that the conserved epitopes that they recognize are not present on functional virion trimers. Nonetheless, such mAbs represent valuable reagents to study the biochemistry and structural biology of Env protein oligomers.


Journal of Immunological Methods | 2014

Development of a contemporary globally diverse HIV viral panel by the EQAPOL program

Ana M. Sanchez; C. Todd DeMarco; Bhavna Hora; Sarah Keinonen; Yue Chen; Christie Brinkley; Mars Stone; Leslie H. Tobler; Sheila M. Keating; Marco Schito; Michael P. Busch; Feng Gao; Thomas N. Denny

The significant diversity among HIV-1 variants poses serious challenges for vaccine development and for developing sensitive assays for screening, surveillance, diagnosis, and clinical management. Recognizing a need to develop a panel of HIV representing the current genetic and geographic diversity NIH/NIAID contracted the External Quality Assurance Program Oversight Laboratory (EQAPOL) to isolate, characterize and establish panels of HIV-1 strains representing global diverse subtypes and circulating recombinant forms (CRFs), and to make them available to the research community. HIV-positive plasma specimens and previously established isolates were collected through a variety of collaborations with a preference for samples from acutely/recently infected persons. Source specimens were cultured to high-titer/high-volume using well-characterized cryopreserved PBMCs from National y donors. Panel samples were stored as neat culture supernatant or diluted into defibrinated plasma. Characterization for the final expanded virus stocks included viral load, p24 antigen, infectivity (TCID), sterility, coreceptor usage, and near full-length genome sequencing. Viruses are made available to approved, interested laboratories using an online ordering application. The current EQAPOL Viral Diversity panel includes 100 viral specimens representing 6 subtypes (A, B, C, D, F, and G), 2 sub-subtypes (F1 and F2), 7 CRFs (01, 02, 04, 14, 22, 24, and 47), 19 URFs and 3 group O viruses from 22 countries. The EQAPOL Viral Diversity panel is an invaluable collection of well-characterized reagents that are available to the scientific community, including researchers, epidemiologists, and commercial manufacturers of diagnostics and pharmaceuticals to support HIV research, as well as diagnostic and vaccine development.


Retrovirology | 2014

Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation

Donglai Liu; Tao Zuo; Bhavna Hora; Hongshuo Song; Wei Kong; Xianghui Yu; Nilu Goonetilleke; Tanmoy Bhattacharya; Alan S. Perelson; Barton F. Haynes; Andrew J. McMichael; Feng Gao

BackgroundFitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses.ResultsThe T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations.ConclusionsOur results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.


PLOS ONE | 2016

Fast dissemination of new HIV-1 CRF02/A1 recombinants in Pakistan

Yue Chen; Bhavna Hora; Todd DeMarco; Sharaf Ali Shah; Manzoor Ahmed; Ana M. Sanchez; Chang Su; Meredith Carter; Mars Stone; Rumina Hasan; Zahra Hasan; Michael P. Busch; Thomas N. Denny; Feng Gao

A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.


PLOS ONE | 2014

Reversion and T cell escape mutations compensate the fitness loss of a CD8+ T cell escape mutant in their cognate transmitted/founder virus.

Hongshuo Song; Bhavna Hora; Tanmoy Bhattacharya; Nilu Goonetilleke; Michael K. P. Liu; Kevin Wiehe; Hui Li; Shilpa S. Iyer; Andrew J. McMichael; Alan S. Perelson; Feng Gao

Immune escape mutations that revert back to the consensus sequence frequently occur in newly HIV-1-infected individuals and have been thought to render the viruses more fit. However, their impact on viral fitness and their interaction with other immune escape mutations have not been evaluated in the background of their cognate transmitted/founder (T/F) viral genomes. To precisely determine the role of reversion mutations, we introduced reversion mutations alone or together with CD8+ T cell escape mutations in their unmodified cognate T/F viral genome and determined their impact on viral fitness in primary CD4+ T cells. Two reversion mutations, V247I and I64T, were identified in Gag and Tat, respectively, but neither had measurable effect on the fitness of their cognate T/F virus. The V247I and G248A mutations that were detected before and concurrently with the potent T cell escape mutation T242N, respectively, were selected by early T cell responses. The V247I or the G248A mutation alone partially restored the fitness loss caused by the T242N mutation. Together they could fully restore the fitness of the T242N mutant to the T/F level. These results demonstrate that the fitness loss caused by a T cell escape mutation could be compensated by preexisting or concurrent reversion and other T cell escape mutations. Our findings indicate that the overall viral fitness is modulated by the complex interplay among T cell escape, compensatory and reversion mutations to maintain the balance between immune escape and viral replication capacity.


Scientific Reports | 2016

Transmission of Multiple HIV-1 Subtype C Transmitted/founder Viruses into the Same Recipients Was not Determined by Modest Phenotypic Differences

Hongshuo Song; Bhavna Hora; Elena E. Giorgi; Amit Kumar; Fangping Cai; Tanmoy Bhattacharya; Alan S. Perelson; Feng Gao

A severe bottleneck exists during HIV-1 mucosal transmission. However, viral properties that determine HIV-1 transmissibility are not fully elucidated. We identified multiple transmitted/founder (T/F) viruses in six HIV-1-infected subjects by analyzing whole genome sequences. Comparison of biological phenotypes of different T/F viruses from the same individual allowed us to more precisely identify critical determinants for viral transmissibility since they were transmitted under similar conditions. All T/F viruses used coreceptor CCR5, while no T/F viruses used CXCR4 or GPR15. However, the efficiency for different T/F viruses from the same individual to use CCR5 was significantly variable, and the differences were even more significant for usage of coreceptors FPRL1, CCR3 and APJ. Resistance to IFN-α was also different between T/F viruses in 2 of 3 individuals. The relative fitness between T/F viruses from the same subject was highly variable (2–6%). Importantly, the levels of coreceptor usage efficiency, resistance to IFN-α and viral fitness were not associated with proportions of T/F viruses in each individual during acute infection. Our results show that the modest but significant differences in coreceptor usage efficiency, IFN-α sensitivity and viral fitness each alone may not play a critical role in HIV-1 transmission.

Collaboration


Dive into the Bhavna Hora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanmoy Bhattacharya

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Busch

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alan S. Perelson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge