Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhavna N. Desai is active.

Publication


Featured researches published by Bhavna N. Desai.


Pharmacognosy Research | 2012

Aloe barbadensis Mill. formulation restores lipid profile to normal in a letrozole-induced polycystic ovarian syndrome rat model

Bhavna N. Desai; Radha Maharjan; Laxmipriya Nampoothiri

Background: Polycystic ovarian syndrome (PCOS), characterized by ovulatory infertility and hyperandrogenism, is associated with metabolic complications such as dyslipidemia, insulin resistance and endothelial dysfunction. Almost 70% PCOS women have abnormal serum lipid levels (dyslipidemia) and 50% of these women are obese. Several classes of pharmacological agents have been used to manage dyslipidemia. However, studies have shown adverse effects associated with these drugs. In the light of alternate therapy, many medicinal herbs have been reported to show hypoglycemic, anti-hyperlipidemic potential. Aloe barbadensis Mill. or Aloe vera is reported as one such herb. This study was to evaluate the lipid correcting effect of Aloe vera gel (AVG) in a PCOS rat model. Materials and Methods: PCOS was induced in Charles Foster female rats by oral administration of non-steroidal aromatase inhibitor letrozole (0.5 mg/kg body weight, 21 days). All rats were hyperglycemic and 90% rats also showed elevated plasma triglycerides, elevated LDL cholesterol levels, and lowered plasma HDL cholesterol levels indicative of a dyslipidemic profile. PCOS positive rats with an aberrant lipid profile were selected for treatment. An AVG formulation (1 ml (10 mg)/day, 30 days) was administered orally. Results and Conclusion: AVG treated PCOS rats exhibited significant reduction in plasma triglyceride and LDL cholesterol levels, with an increase in HDL cholesterol. The gel treatment also caused reversion of abnormal estrous cyclicity, glucose intolerance, and lipid metabolizing enzyme activities, bringing them to normal. In conclusion, AVG has phyto components with anti-hyperlipidemic effects and it has shown efficacy in management of not only PCOS but also the associated metabolic complication : dyslipidemia.


Molecular metabolism | 2017

Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury

Bhavna N. Desai; Garima Singhal; Mikiko Watanabe; Darko Stevanovic; Thomas Lundasen; ffolliott M. Fisher; Marie L. Mather; Hilde Vardeh; Nicholas Douris; Andrew C. Adams; Imad Nasser; Garret A. FitzGerald; Jeffrey S. Flier; Carsten Skarke; Eleftheria Maratos-Flier

Objective Excess ethanol consumption has serious pathologic consequences. In humans, repeated episodes of binge drinking can lead to liver damage and have adverse effects on other organs such as pancreas and brain. Long term chronic consumption of ethanol can also result in progressive alcoholic liver disease and cirrhosis. Fibroblast growth factor 21 (FGF21) is a metabolic regulator with multiple physiologic functions. FGF21 is a novel biomarker for non-alcoholic fatty liver disease (NAFLD) in humans and limits hepatotoxicity in mice. Therefore, we explored the possibility that FGF21 plays a role in response to ethanol consumption in both humans and mice. Methods We used a binge drinking paradigm in humans to examine the effect of acute ethanol consumption on circulating FGF21. We adapted this paradigm to evaluate the acute response to ethanol in mice. We then examined the role of FGF21 on liver pathology in two models of chronic ethanol consumption in both wild type (WT) mice and mice lacking FGF21 (FGF21-KO). Results Acute ethanol consumption resulted in a robust induction of serum FGF21 after 6 h in both humans and mice. Serum ethanol peaked at 1 h in both species and was cleared by 6 h. Ethanol clearance was the same in WT and FGF21-KO mice, indicating that FGF21 does not play a major role in ethanol metabolism in a binge paradigm. When FGF21-KO mice were fed the Lieber–DeCarli diet, a high fat diet supplemented with ethanol, a higher mortality was observed compared to WT mice after 16 days on the diet. When FGF21-KO mice consumed 30% ethanol in drinking water, along with a normal chow diet, there was no mortality observed even after 16 weeks, but the FGF21-KO mice had significant liver pathology compared to WT mice. Conclusions Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.


Endocrinology | 2013

Integrated Effects of Leptin in the Forebrain and Hindbrain of Male Rats

Bhavna N. Desai; Ruth B. S. Harris

Leptin receptors (ObRs) in the forebrain and hindbrain have been independently recognized as important mediators of leptin responses. It is unclear how leptin activity in these areas is integrated. We tested whether both forebrain and hindbrain ObRs have to be activated simultaneously to change energy balance and to maintain metabolic homeostasis. Previous studies used acute leptin injections in either the third ventricle (1-5 μg) or the fourth ventricle (3-10 μg); here we used 12-day infusions of low doses of leptin in one or both ventricles (0.1 μg/24 h in third, 0.6 μg/24 h in fourth). Male Sprague Dawley rats were fitted with third and fourth ventricle cannulas, and saline or leptin was infused from Alzet pumps for 6 or 12 days. Rats that received leptin into only the third or the fourth ventricle were not different from controls that received saline in both ventricles. By contrast, rats with low-dose leptin infusions into both the third and fourth ventricle showed a dramatic 60% reduction in food intake that was reversed on day 6, a 20% weight loss that stabilized on day 6, and a 50% decrease in body fat at day 12 despite the correction of food intake. They displayed normal activity and maintained energy expenditure despite weight loss, indicating inappropriately high thermogenesis that coincided with increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the brainstem. Altogether, these findings show that with low doses of leptin, chronic activation of both hypothalamic and brainstem ObRs is required to reduce body fat.


Molecular metabolism | 2017

Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice

Nicholas Douris; Bhavna N. Desai; ffolliott M. Fisher; Theodore I. Cisu; Alan J. Fowler; Eleen Zarebidaki; Ngoc Ly T. Nguyen; Donald A. Morgan; Timothy J. Bartness; Kamal Rahmouni; Jeffrey S. Flier; Eleftheria Maratos-Flier

Objective We have previously shown that the consumption of a low-carbohydrate ketogenic diet (KD) by mice leads to a distinct physiologic state associated with weight loss, increased metabolic rate, and improved insulin sensitivity [1]. Furthermore, we identified fibroblast growth factor 21 (FGF21) as a necessary mediator of the changes, as mice lacking FGF21 fed KD gain rather than lose weight [2]. FGF21 activates the sympathetic nervous system (SNS) [3], which is a key regulator of metabolic rate. Thus, we considered that the SNS may play a role in mediating the metabolic adaption to ketosis. Methods To test this hypothesis, we measured the response of mice lacking all three β-adrenergic receptors (β-less mice) to KD feeding. Results In contrast to wild-type (WT) controls, β-less mice gained weight, increased adipose tissue depots mass, and did not increase energy expenditure when consuming KD. Remarkably, despite weight-gain, β-less mice were insulin sensitive. KD-induced changes in hepatic gene expression of β-less mice were similar to those seen in WT controls eating KD. Expression of FGF21 mRNA rose over 60-fold in both WT and β-less mice fed KD, and corresponding circulating FGF21 levels were 12.5 ng/ml in KD-fed wild type controls and 35.5 ng/ml in KD-fed β-less mice. Conclusions The response of β-less mice distinguishes at least two distinct categories of physiologic effects in mice consuming KD. In the liver, KD regulates peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways through an action of FGF21 independent of the SNS and beta-adrenergic receptors. In sharp contrast, induction of interscapular brown adipose tissue (BAT) and increased energy expenditure absolutely require SNS signals involving action on one or more β-adrenergic receptors. In this way, the key metabolic actions of FGF21 in response to KD have diverse effector mechanisms.


American Journal of Physiology-endocrinology and Metabolism | 2015

Leptin in the hindbrain facilitates phosphorylation of STAT3 in the hypothalamus

Bhavna N. Desai; Ruth B. S. Harris

Leptin receptors (ObRs) in the forebrain and hindbrain have been independently recognized as important mediators of leptin responses. We recently used low-dose leptin infusions to show that chronic activation of both hypothalamic and hindbrain ObRs is required to reduce body fat. The objective of the present study was to identify the brain nuclei that are selectively activated in rats that received chronic infusion of leptin in both the forebrain and hindbrain. Either saline or leptin was infused into third and fourth ventricles (0.1 μg/24 h in the third ventricle and 0.6 μg/24 h in the fourth ventricle) of male Sprague-Dawley rats for 6 days using Alzet pumps. Rats infused with leptin into both ventricles (LL rats) showed a significant increase in phosphorylated (p)STAT3 immunoreactivity in the arcuate nucleus, ventromedial hypothalamus, dorsomedial hypothalamus, and posterior hypothalamus compared with other groups. No differences in pSTAT3 immunoreactivity were observed in midbrain or hindbrain nuclei despite a sixfold higher infusion of leptin into the fourth ventricle than the third ventricle. ΔFosB immunoreactivity, a marker of chronic neuronal activation, showed that multiple brain nuclei were chronically activated due to the process of infusion, but only the arcuate nucleus, ventromedial hypothalamus, dorsomedial hypothalamus, and ventral tuberomamillary nucleus showed a significant increase in LL rats compared with other groups. These data demonstrate that low-dose leptin in the hindbrain increases pSTAT3 in areas of the hypothalamus known to respond to leptin, supporting the hypothesis that leptin-induced weight loss requires an integrated response from both the hindbrain and forebrain.


American Journal of Physiology-endocrinology and Metabolism | 2014

Blockade of the cerebral aqueduct in rats provides evidence of antagonistic leptin responses in the forebrain and hindbrain

Michael I. Vaill; Bhavna N. Desai; Ruth B. S. Harris

Previously, we reported that low-dose leptin infusions into the fourth ventricle produced a small but significant increase in body fat. These data contrast with reports that injections of higher doses of leptin into the fourth ventricle inhibit food intake and weight gain. In this study, we tested whether exogenous leptin in the fourth ventricle opposed or contributed to weight loss caused by third ventricle leptin infusion by blocking diffusion of CSF from the third to the fourth ventricle. Male Sprague-Dawley rats received third ventricle infusions of PBS or 0.3 μg leptin/24 h from miniosmotic pumps. After 4 days, rats received a 3-μl cerebral aqueduct injection of saline or of thermogelling nanoparticles (hydrogel) that solidified at body temperature. Third ventricle leptin infusion inhibited food intake and caused weight loss. Blocking the aqueduct exaggerated the effect of leptin on food intake and weight loss but had no effect on the weight of PBS-infused rats. Leptin reduced both body fat and lean body mass but did not change energy expenditure. Blocking the aqueduct decreased expenditure of rats infused with PBS or leptin. Infusion of leptin into the third ventricle increased phosphorylated STAT3 in the VMHDM of the hypothalamus and the medial NTS in the hindbrain. Blocking the aqueduct did not change hypothalamic p-STAT3 but decreased p-STAT3 in the medial NTS. These results support previous observations that low-level activation of hindbrain leptin receptors has the potential to blunt the catabolic effects of leptin in the third ventricle.


American Journal of Physiology-endocrinology and Metabolism | 2016

Fourth-ventricle leptin infusions dose-dependently activate hypothalamic signal transducer and activator of transcription 3

Ruth B. S. Harris; Bhavna N. Desai

Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus. In a dose response study 14-day infusions of increasing doses of leptin showed significant hypophagia, weight loss, and increased hypothalamic p-STAT3 in rats receiving at least 0.9 μg leptin/day. In a second study 0.6 μg leptin/day transiently inhibited food intake and reduced carcass fat, but had no significant effect on energy expenditure. In a final study, we identified the localization of STAT3 activation in the hypothalamus of rats receiving 0, 0.3, or 1.2 μg leptin/day. The high dose of leptin, which caused weight loss in the first experiment, increased p-STAT3 in the ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. The low dose that increased brown fat UCP1 but did not affect body composition in the first experiment had little effect on hypothalamic p-STAT3. We propose that hindbrain leptin increases the precision of control of energy balance by lowering the threshold for leptin signaling in the forebrain. Further studies are needed to directly test this hypothesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

An acute method to test leptin responsiveness in rats

Bhavna N. Desai; Ruth B. S. Harris

Continuous subcutaneous administration of leptin normalizes blood glucose levels in rodent models of Type 1 and Type 2 diabetes independent of changes in food intake, body weight, and plasma insulin. We tested whether an acute intravenous leptin infusion changed blood glucose in normal and diet-induced leptin-resistant rats to determine whether this measure could be used as a marker of leptin sensitivity. Leptin-responsive chow-fed rats and diet-induced leptin-resistant male Sprague-Dawley rats were fitted with thoracic jugular vein catheters. Four days after surgery, conscious rats were infused intravenously with either saline for 32 min, low-dose (LD) leptin (1.9 μg·kg(-1)·min(-1)) followed by high-dose (HD) leptin (3.8 μg·kg(-1)·min(-1)) for 16 min each, or only HD leptin for 16 min. There was no change in blood glucose after an acute intravenous infusion of either LD leptin or HD leptin alone for 16 min. An intravenous infusion of LD followed by HD leptin for 16 min each significantly decreased serum glucose in leptin-responsive rats but not in leptin-resistant rats. Leptin infusions increased serum leptin in all rat groups but had no effect on plasma glucagon or 12-h weight gain and energy intake in any group of rats. These results show that leptin has an acute glucose-lowering effect that reflects the leptin responsiveness of the rat. This effect is consistent across controls and different leptin-resistant rat models, and the acute nonlethal test provides a novel method of testing leptin responsiveness in rats.


Steroids | 2013

Long-term estrogen deprivation leads to elevation of Dickkopf-1 and dysregulation of Wnt/β-Catenin signaling in hippocampal CA1 neurons

Erin L. Scott; Quanguang Zhang; Dong Han; Bhavna N. Desai; Darrell W. Brann


The FASEB Journal | 2015

Leptin in the Hindbrain Facilitates Phosphorylation of STAT3 in the Hypothalamus

Bhavna N. Desai; Ruth B. S. Harris

Collaboration


Dive into the Bhavna N. Desai's collaboration.

Top Co-Authors

Avatar

Ruth B. S. Harris

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Eleftheria Maratos-Flier

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Flier

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nicholas Douris

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

ffolliott M. Fisher

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan J. Fowler

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Skarke

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Darko Stevanovic

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Darrell W. Brann

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge