Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhim Chamlagain is active.

Publication


Featured researches published by Bhim Chamlagain.


ACS Nano | 2013

Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating

Meeghage Madusanka Perera; Ming-Wei Lin; Hsun Jen Chuang; Bhim Chamlagain; Chongyu Wang; Xuebin Tan; Mark Ming Cheng Cheng; David Tománek; Zhixian Zhou

We report the fabrication of ionic liquid (IL)-gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility μ ≈ 60 cm(2) V(-1) s(-1) at 250 K in IL-gated devices exceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from ≈ 100 cm(2) V(-1) s(-1) at 180 K to ≈ 220 cm(2) V(-1) s(-1) at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >10(7) (10(4)) for electrons (holes), and a near ideal subthreshold swing of ≈ 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin IL dielectric layer.


Nano Letters | 2016

Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors.

Hsun Jen Chuang; Bhim Chamlagain; Michael R. Koehler; Meeghage Madusanka Perera; Jiaqiang Yan; David Mandrus; David Tománek; Zhixian Zhou

We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.


ACS Nano | 2014

Mobility Improvement and Temperature Dependence in MoSe2 Field-Effect Transistors on Parylene-C Substrate

Bhim Chamlagain; Qing Li; Nirmal Ghimire; Hsun Jen Chuang; Meeghage Madusanka Perera; Honggen Tu; Yong Xu; Minghu Pan; Di Xaio; Jiaqiang Yan; David Mandrus; Zhixian Zhou

We report low-temperature scanning tunneling microscopy characterization of MoSe2 crystals and the fabrication and electrical characterization of MoSe2 field-effect transistors on both SiO2 and parylene-C substrates. We find that the multilayer MoSe2 devices on parylene-C show a room-temperature mobility close to the mobility of bulk MoSe2 (100-160 cm(2) V(-1) s(-1)), which is significantly higher than that on SiO2 substrates (≈50 cm(2) V(-1) s(-1)). The room-temperature mobility on both types of substrates are nearly thickness-independent. Our variable-temperature transport measurements reveal a metal-insulator transition at a characteristic conductivity of e(2)/h. The mobility of MoSe2 devices extracted from the metallic region on both SiO2 and parylene-C increases up to ≈500 cm(2) V(-1) s(-1) as the temperature decreases to ≈100 K, with the mobility of MoSe2 on SiO2 increasing more rapidly. In spite of the notable variation of charged impurities as indicated by the strongly sample-dependent low-temperature mobility, the mobility of all MoSe2 devices on SiO2 converges above 200 K, indicating that the high temperature (>200 K) mobility in these devices is nearly independent of the charged impurities. Our atomic force microscopy study of SiO2 and parylene-C substrates further rules out the surface roughness scattering as a major cause of the substrate-dependent mobility. We attribute the observed substrate dependence of MoSe2 mobility primarily to the surface polar optical phonon scattering originating from the SiO2 substrate, which is nearly absent in MoSe2 devices on parylene-C substrate.


ACS Nano | 2015

Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions

Tu Hong; Bhim Chamlagain; Shuren Hu; Sharon M. Weiss; Zhixian Zhou; Ya-Qiong Xu

We investigate the wavelength- and polarization-dependence of photocurrent signals generated at few-layer MoS2-metal junctions through spatially resolved photocurrent measurements. When incident photon energy is above the direct bandgap of few-layer MoS2, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, which can be attributed to photovoltaic effects. In contrast, if incident photon energy is below the direct bandgap of MoS2, the photocurrent response is maximized when the incident light is polarized in the direction perpendicular to the electrode edge, indicating different photocurrent generation mechanisms. Further studies show that this polarized photocurrent response can be interpreted in terms of the polarized absorption of light by the plasmonic metal electrode, its conversion into hot electron-hole pairs, and subsequent injection into MoS2. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in metal-semiconductor junctions, opening the door for engineering future two-dimensional materials based optoelectronics through surface plasmon resonances.


Nanoscale | 2015

Anisotropic photocurrent response at black phosphorus–MoS2 p–n heterojunctions

Tu Hong; Bhim Chamlagain; Tianjiao Wang; Hsun Jen Chuang; Zhixian Zhou; Ya-Qiong Xu

We investigate the photocurrent generation mechanisms at a vertical p-n heterojunction between black phosphorus (BP) and molybdenum disulfide (MoS2) flakes through polarization-, wavelength-, and gate-dependent scanning photocurrent measurements. When incident photon energy is above the direct band gap of MoS2, the photocurrent response demonstrates a competitive effect between MoS2 and BP in the junction region. In contrast, if the incident photon energy is below the band gap of MoS2 but above the band gap of BP, the photocurrent response at the p-n junction exhibits the same polarization dependence as that at the BP-metal junction, which is nearly parallel to the MoS2 channel. This result indicates that the photocurrent signals at the MoS2-BP junction primarily result from the direct band gap transition in BP. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in vertical 2D semiconductor heterojunctions, offering a new way of engineering future two-dimensional materials based optoelectronic devices.


Advanced Materials | 2016

Visualizing Light Scattering in Silicon Waveguides with Black Phosphorus Photodetectors

Tianjiao Wang; Shuren Hu; Bhim Chamlagain; Tu Hong; Zhixian Zhou; Sharon M. Weiss; Ya-Qiong Xu

A black phosphorus photodetector is utilized to investigate the light-scattering patterns of a silicon waveguide through wavelength- and polarization-dependent scanning photocurrent measurements. The photocurrent signals exhibit similar patterns to the light-intensity distribution of the waveguide calculated by finite-difference time-domain simulations, suggesting that photoexcited electron-hole pairs in the silicon waveguide can be injected into phosphorene to induce its photoresponse.


Nano Letters | 2014

High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts.

Hsun Jen Chuang; Xuebin Tan; Nirmal Ghimire; Meeghage Madusanka Perera; Bhim Chamlagain; Mark Ming Cheng Cheng; Jiaqiang Yan; David Mandrus; David Tománek; Zhixian Zhou


Nanoscale | 2014

Polarized photocurrent response in black phosphorus field-effect transistors

Tu Hong; Bhim Chamlagain; Wenzhi Lin; Hsun Jen Chuang; Minghu Pan; Zhixian Zhou; Ya-Qiong Xu


ACS Applied Materials & Interfaces | 2016

Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal–Insulator Electronics

Qingsong Cui; Maryam Sakhdari; Bhim Chamlagain; Hsun Jen Chuang; Yi Liu; Mark Ming Cheng Cheng; Zhixian Zhou; Pai Yen Chen


2D Materials | 2017

Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors

Bhim Chamlagain; Qingsong Cui; Sagar Paudel; Mark Ming Cheng Cheng; Pai-Yen Chen; Zhixian Zhou

Collaboration


Dive into the Bhim Chamlagain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Mandrus

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jiaqiang Yan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nirmal Ghimire

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tu Hong

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge